

REPUBLIKA SLOVENIJA MINISTRSTVO ZA IZOBRAŽEVANJE, ZNANOST IN ŠPORT Univerza v Ljubljani

STUCTURAL FIRE DESIGN Considerations in fire design of steel structures

loan Both, PhD. Eng

Politehnica University of Timisoara

Department of Steel Structures and Structural Mechanics

Ljubljana, 24 Oct - 3 Nov 2017

Naložbo sofinancirata Evropska unija iz Evropskega socialnega sklada in Republika Slovenija.

Overview

Context. Why fire design?

Materials

Actions on structures

Basic design considerations

Fire design considerations

Examples

Context. Why?

Source of energy and heat

Fire effect 1

Fire effect 2

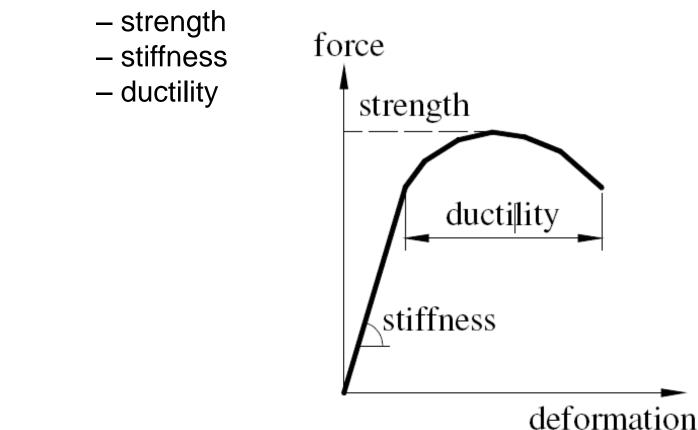
The cause of material and life loss

Fire effect 3

Fire effect 4

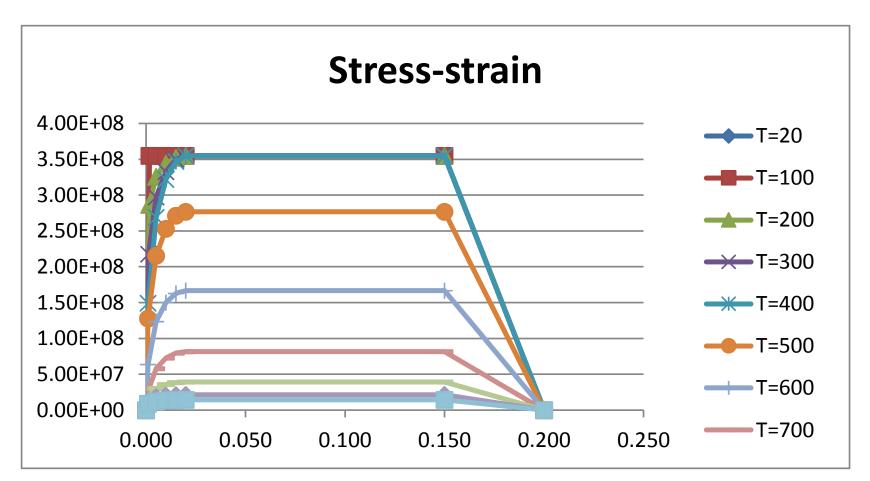
Fire effect 5

Fire effect 6



Materials

Structural materials


- Structural material is the one which is used in those parts of the structure which carry loads and give it strength and stiffness
- Properties of structural materials:

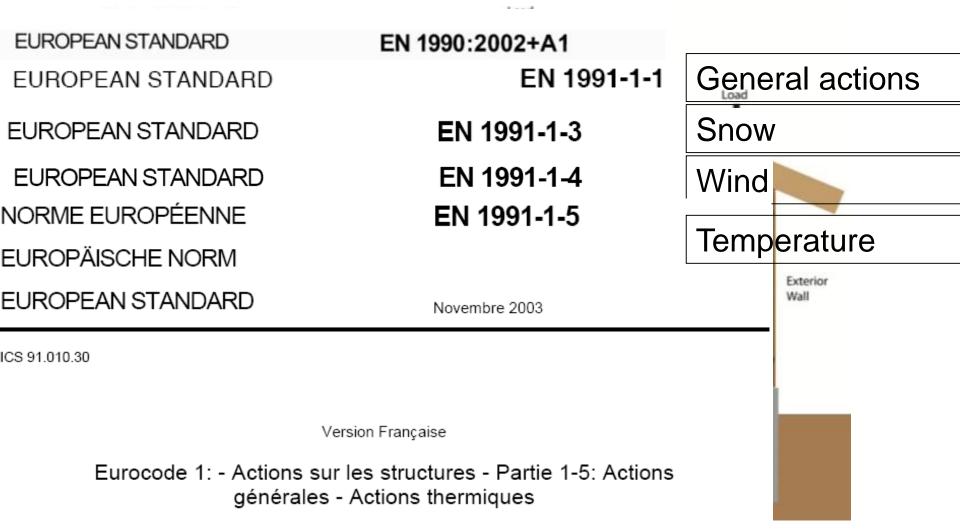
Materials

Structural materials: ductility

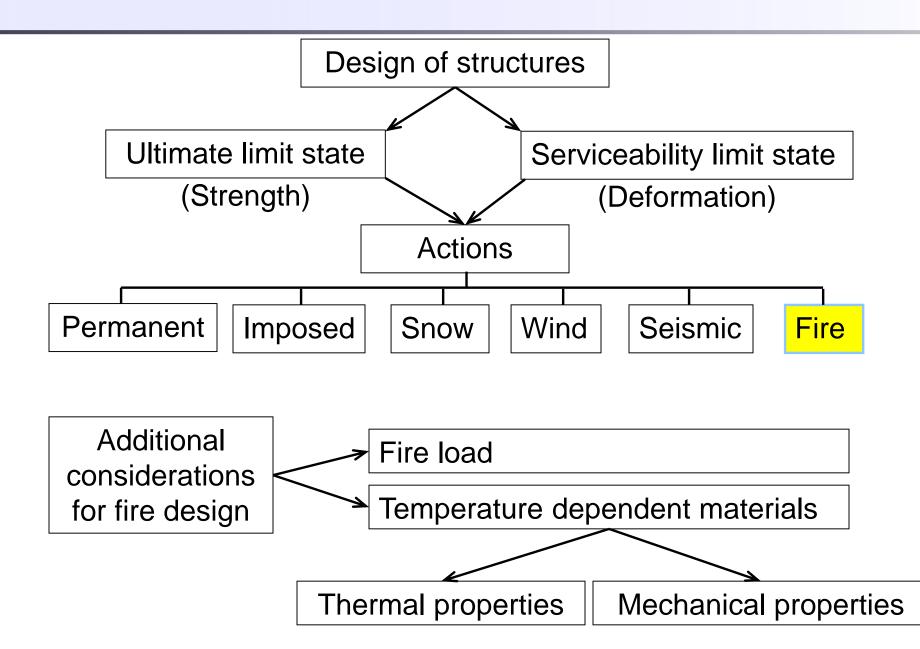
Ductile materials: able to deform significantly into the inelastic range

Actions are classified by their variation in time as follows:

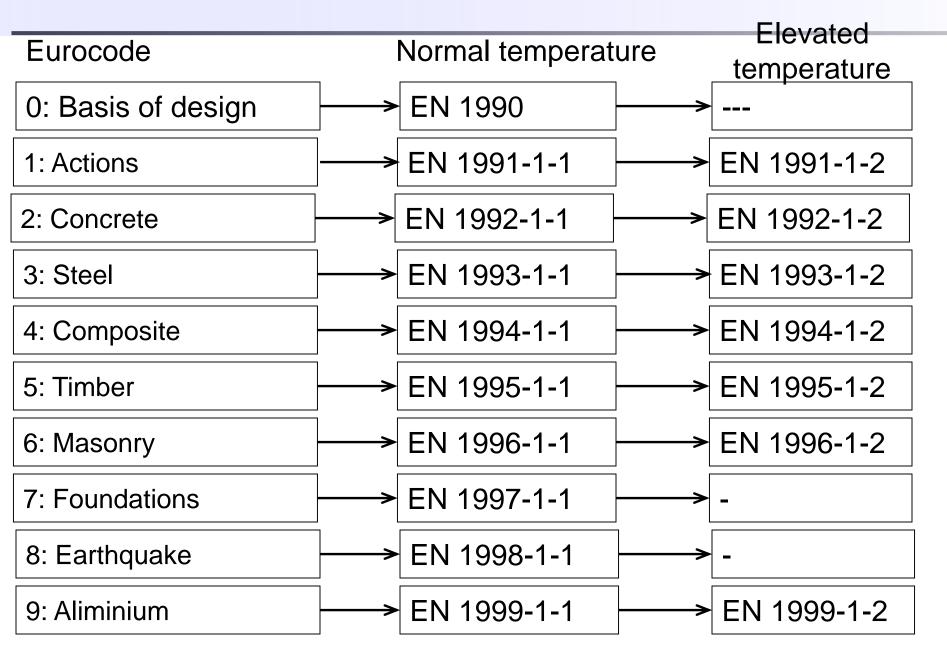
 permanent actions (G), e.g. self-weight of structures, fixed equipment and road surfacing, and indirect actions caused by shrinkage and uneven settlements;

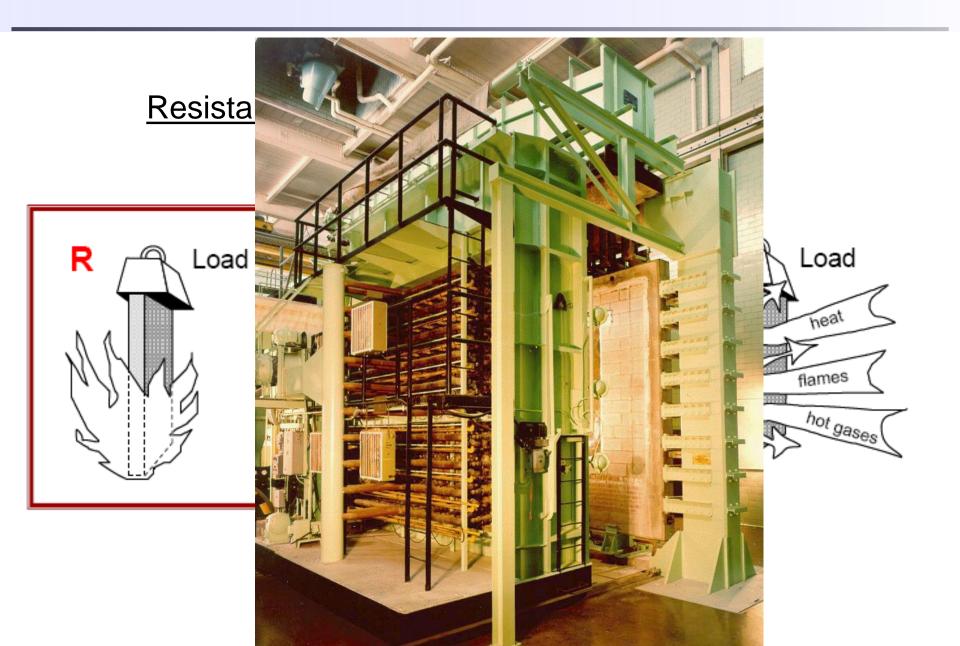

 variable actions (Q), e.g. imposed loads on building floors, beams and roofs, wind actions or snow loads;

accidental actions (A), e.g. explosions, or impact from vehicles
 FIRE


Several loads → load combinations

Actions on structures


Based on codes

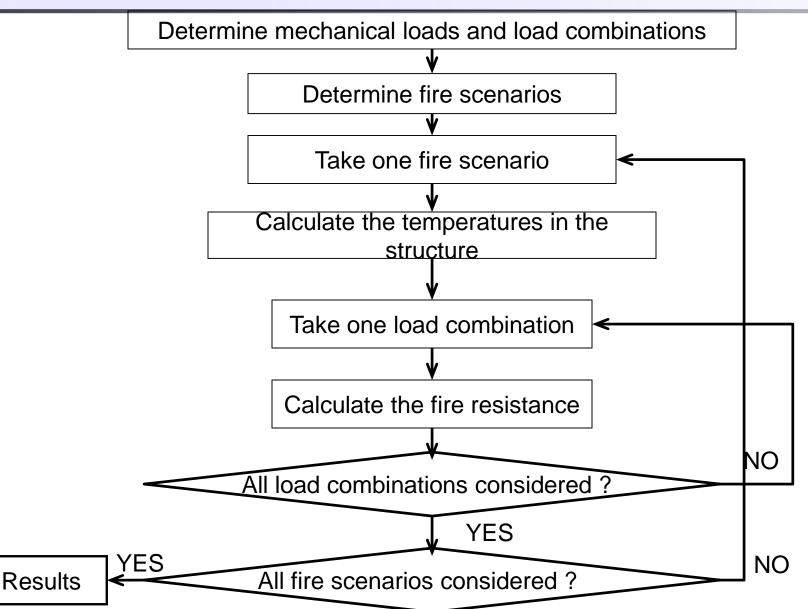

Design considerations

Fire action in design codes

Design considerations

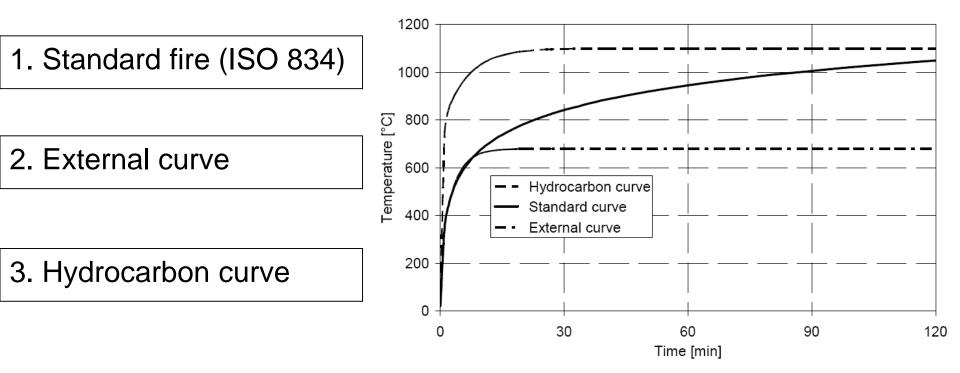
Design considerations

The aim of fire design codes


- The Eurocodes covers the Resistance criterion the load bearing capacity of elements and structures. It gives information that allows calculating whether or how long a structure is able to withstand the applied loads during a fire. The design is performed in the ultimate limit state.
- The EN fire design codes **DO NOT** relate to the insulation or integrity criteria of structural elements (E or I).

- There is no deformation criteria explicitly mentioned in the Eurocode.
- Deformation criteria should be applied in two cases:

1. When the fire protection may loose its efficiency in case of excessive deformations.

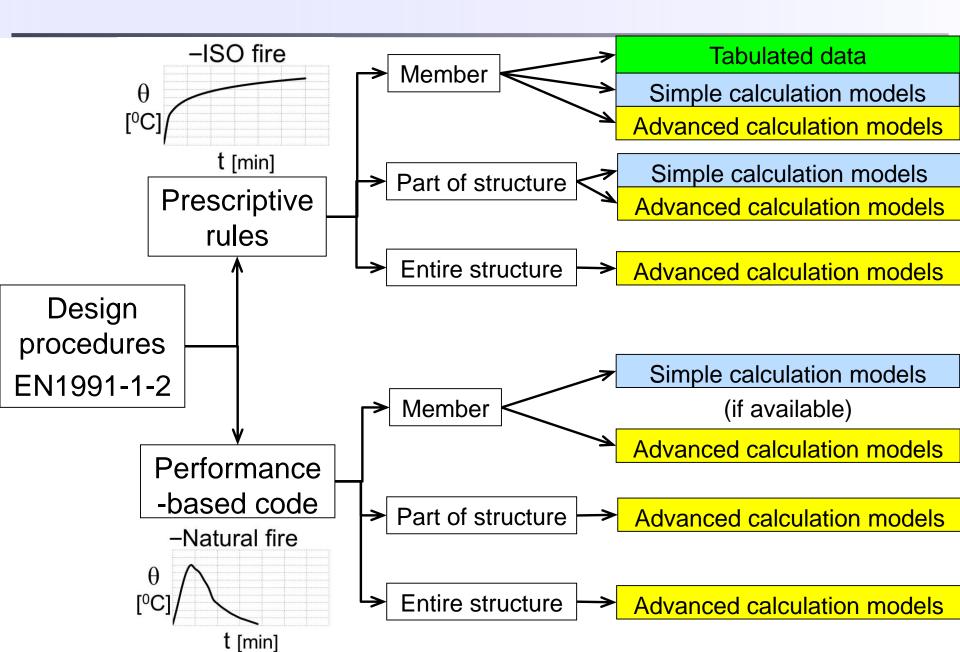

2. When separating elements, for example a separating wall, supported by or located under a structural element may suffer from excessive deformations of this member

Steps of an analysis

Thermal action

the fire is represented by a temperature-time curve, i.e. an equation describing the evolution with time of the unique temperature that is supposed to represent the environment in which the structure is located.

Mechanical actions


The design against the ultimate limit state is based on the comparison between the **RESISTANCE OF THE STRUCTURE** calculated with the design values of material properties, and the **EFFECTS OF ACTIONS** calculated with design value of actions.

Action

	retion		
$R_{fi,d,t}(X_{d,fi}) > E_{fi,d}(F_{fi,d})$	Imposed load in buildings		
$f_{i,\alpha,i} \subset \alpha, f_{i} \to f_{i,\alpha} \subset f_{i,\alpha}$	category A: domestic, residential	0.5	0.3
	category B: offices	0.5	0.3
	category C: congregation areas	0.7	0.6
	category D: shopping	0.7	0.6
	category E: storage	0.9	0.8
	Traffic loads in buildings		
$F_{\alpha,\beta} = G_{\beta} + P_{\beta} + M_{\alpha\beta} O_{\beta\beta} + \sum_{\alpha,\beta} M_{\alpha\beta} O_{\beta\beta}$	category F: vehicle weight ≤ 30 kN	0.7	0.6
$E_{fi,d} = G_k + P_k + \psi_{1,1} Q_{kl} + \sum_{i=1}^{k} \psi_{2,i} Q_{ki}$	category G: 30kN < vehicle weight < 160kN	0.5	0.3
1>1	category H: roofs	0.0	0.0
$F_{C_1} = G_1 + P_2 + \sum_{i=1}^{n} y_{i} g_{i} \cdot O_{i}$	Snow loads		
$E_{fi,d} = G_k + P_k + \sum_{i=1} \psi_{2,i} Q_{ki}$	for sites located at altitude $H \le 1000 \text{ m}$	0.2	0.0
1=1	for sites located at altitude H > 1000 m	0.5	0.2
	Wind loads	0.5	0.0

 Ψ_2

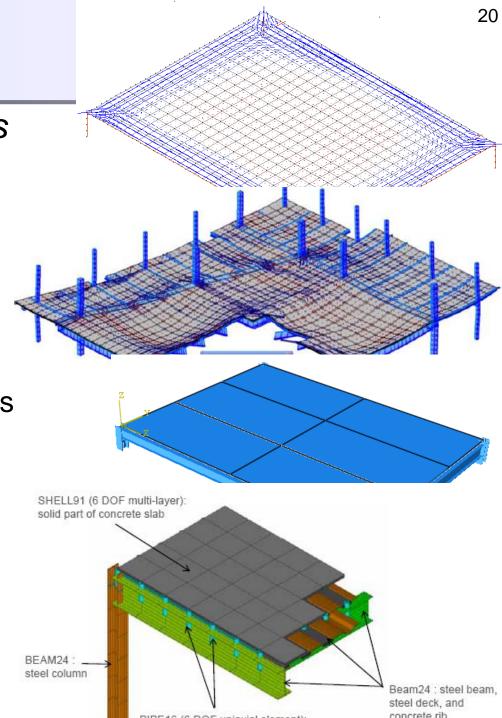
 Ψ_1

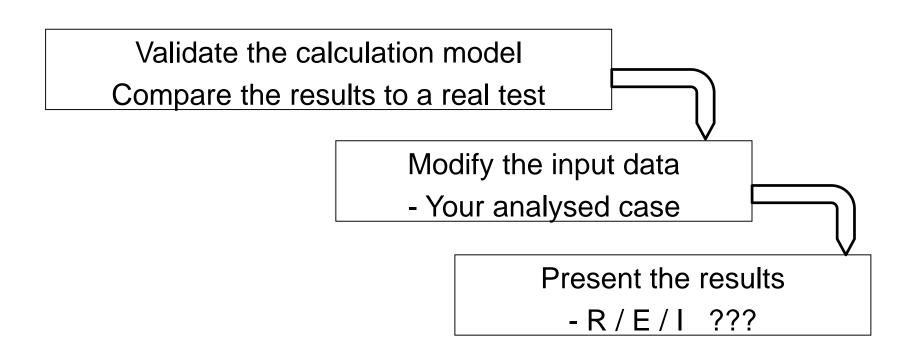
Tabulated data:

recognised design solutions for the standard fire exposure

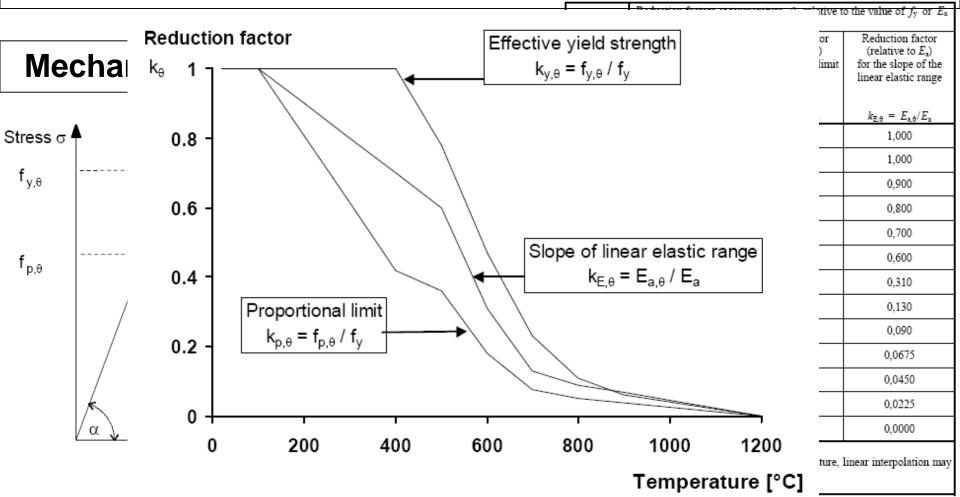
Columns	Standard fire resistance	fire Column width b _{min} /axis distance a of the main bars				
$\mu_{\rm fi} = N_{\rm Ed.fi} / N_{\rm Rd}$	resistance	Column ex	Exposed on one side			
,	-	μ _{fi} = 0.2	μ _{fi} = 0.5	μ _{fi} = 0.7	μ _{fi} = 0.7	
	1	2	3	4	5	
	R 30	200/25	200/25	200/32 300/27	155/25	
	R 60	200/25	200/36 300/31	250/46 350/40	155/25	
	R 90	200/31 300/25	300/45 400/38	350/53 450/40**	155/25	
	R 120	250/40 350/35	350/45** 450/40**	350/57** 450/51**	175/35	
@ @ h≥b	R 180	350/45**	350/63**	450/70**	230/55	
	R 240	350/61**	450/75**	-	295/70	
	Minimum 8 bars For prestressed co noted.	olumns the increas	e of axis distance	according to 4.2	.2. (4) should be	

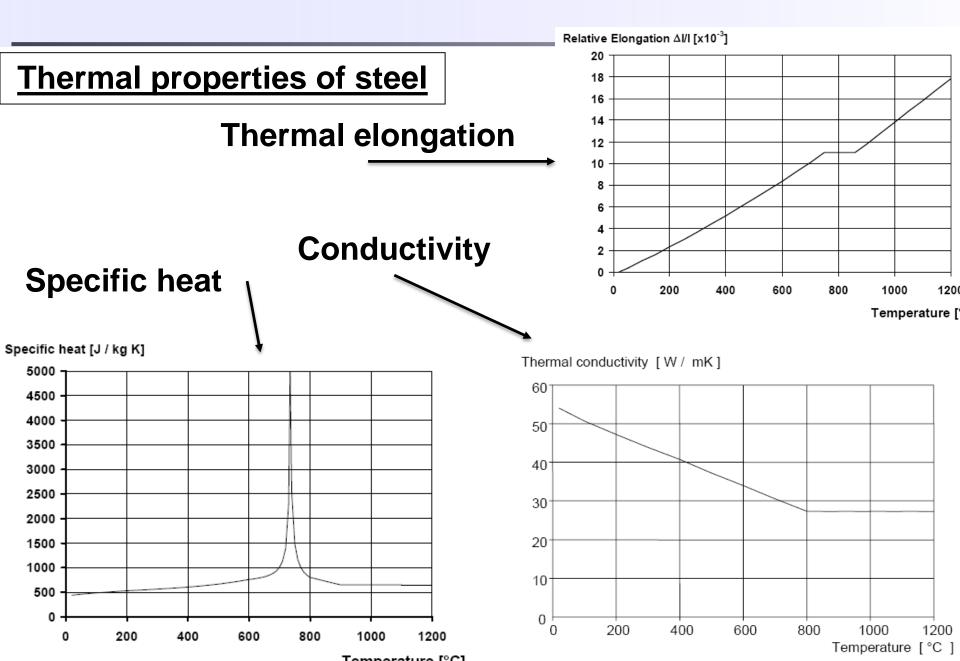
Simple calculatin models:

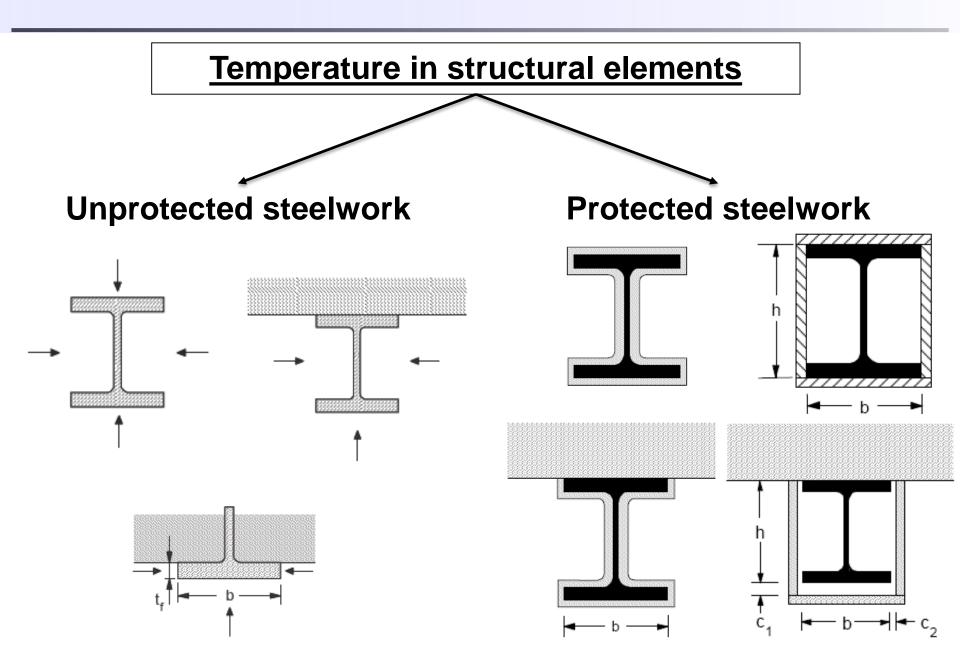

- The resistance is based on analytical relations


 $R_{fi,d,t}(X_{d,fi}) > E_{fi,d}(F_{fi,d})$

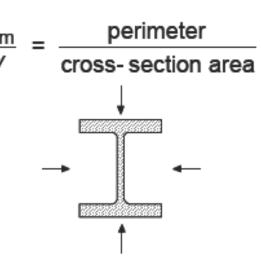
Introduction

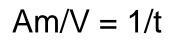

Advanced calculation models

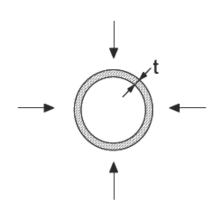

- Dedicated FE programs
 Computational environment
 is predefined
 - SAFIR
 - VULCAN
 - etc.
- General purpose FE programs
 Specific settings should be defined
 - ABAQUS [4]
 - ANSYS
 - etc.



ALL CALCULATION MODELS ARE BASED ON THE MATERIAL PROPERTIES DEGRADATION CAUSED BY ELEVATED TEMPERATURE

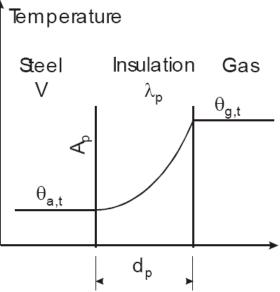

Unprotected steelwork temperature development


$$\Delta \theta_{s,t} = k_{sh} \frac{A_m/V}{c_a \rho_a} \dot{h}_{net,d} \Delta t$$

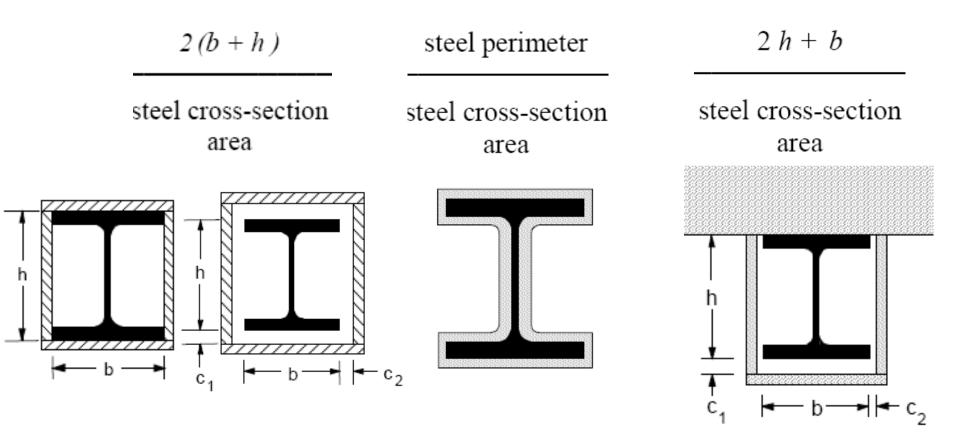

 $\Delta \theta_{s,t}$ is the steel temperature increase from time t to time $t + \Delta t$,

- k_{sh} is the correction factor for the shadow effect, see below,
- A_m is the surface area of the member per unit length,
- V is the volume of the member per unit length,
- c_a is the specific heat of steel,
- ρ_a is the unit mass of steel,
- $h_{net,d}$ is the design value of the net heat flux per unit area,
- Δt is the time interval.

Am/V : section factor


Unprotected steelwork temperature development

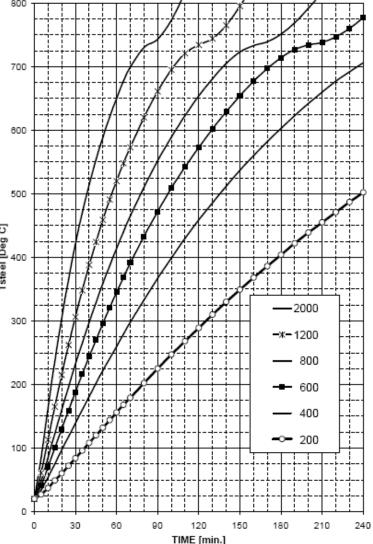
							900 -	
A [*] _m /V [m ⁻¹]	400	200	100	60	40	25	800	
V/A [*] _m [mm]	2.5	5.0	10.0	16.7	25.0	40.0	-	
Time [min.]		S	teel tempe	rature in °	С		700 -	
0	20	20	20	20	20	20	-	
5	430	291	177	121	90	65		<u>╶╶┼╶┽╌┥┥</u> ┥┽╌┥┥╌┼╌┥ [╋] ╶┼╌┝╌┥┝┥╴┼╴┿
10	640	552	392	276	204	142	600	
11	661	587	432	308	228	159	_	└╶ ┊╶┊╶┋ ┫╡╴┛┍╌╡ ╢╌┼╶┊ ╣╴┿╶┧╌┟╱╢╴┽╴┥╴┥╴┽╴┿╶┿╌┥╴┥╴┽╴┽╴┥
12	678	616	469	340	253	177	云 500 ·	<u>╴╸┽╶┑╋</u> ╶┥╢╴┽ <u>╄</u> ╶┝╴ <u>┟</u> ╴┼╴┽╴┽╶┾╶┾╶┾╴┼╸┽╸┽╴┽╴┼╴┽╴┽╴┽╴┥╴┥╴┥
13	693	642	503	371	278	194	Tsteel [Deg C] 400	·····
14	705	663	535	402	303	212		┟╍ <u>╪┍╫</u> ╢╢╌╢╢╗╗╗╗╗╗
15	716	682	565	432	328	230	_ فع 400	
16	725	698	591	460	353	249		┟╌┽╌╢╴╫┥╡┍╢╴╡╱╬╌╎╴╎╱┇╌┽╌┾╌┝╌┝╌┼╌┼╌┽╌┽╌┾╌┾╌┼╌┥╌┥
17	732	711	616	487	377	267	-	└╶┼ <i>╲┨╌┫┥┧╌╬╌╌└╱╌╌╌╌┼┼╌┼╌┼╌┼╌┼╌┼╌┼╌</i> ┼╌┼
18	736	721	638	513	401	286	300 -	
19	743	729	658	538	425	304	_	
20	754	734	676	561	447	323	-	
21	767	738	692	583	470	341	200	100 m-1 or 10.0 mm
22	780	744	706	604	491	360	-	∦ + ∮ + / + ∦ - ∤ -+-+-+-+-+-+- — 60 m-1 or 16.7 mm -+-+-
-		•				1	-	
							100 -	25 m-1 or 40.0 mm
							0.	0 10 20 30 40 50 60
								TIME [min.]


Protected steelwork temperature development

$\Delta heta_{\mathrm{a,t}}$	$= \frac{\lambda_{\rm p} A_{\rm p} / V}{d_{\rm p} c_{\rm a} \rho_{\rm a}} \frac{(\theta_{\rm g,t} - \theta_{\rm a,t})}{(1 + \phi/3)} \Delta t - (e^{\phi/10} - 1) \Delta \theta_{\rm g,t}$			
$\lambda_{ m p}$	is the thermal conductivity of the fire protection material,			
$A_{\rm p}/V$	is the section factor for steel members insulated by fire protection material,	n Temperat	ure	
A_{p}	is the appropriate area of fire protection material per unit length of member,	Steel	Insulation	Gas
V	is the volume of the member per unit length,	V	λ	
$\theta_{g,t}$	is the ambient gas temperature at time t,		Ĺ	$\boldsymbol{\theta}_{g,t}$
$\theta_{\mathrm{a,t}}$	is the steel temperature at time t,	Å		
d_{p}	is the thickness of the fire protection material,	$\theta_{a,t}$		
Ca	is the temperature dependant specific heat of steel,	′a,t		
$ ho_{a}$	is the unit mass of steel,			,
Δt	is the time interval,		d _p	
$\Delta \theta_{\rm g,t}$	is the increase of the ambient gas temperature during the time interval \Box_{i}	,	< `▶	
Cp	is the temperature independent specific heat of the fire protection material,	n		
0	is the unit mass of the fire protection material			

is the unit mass of the fire protection material, $\rho_{\rm p}$

Protected steelwork temperature development



Protected steelwork temperature development

k	_	λ_p	A_p
n _p	_	d_p	V

						_		
200	400	600	800	1200	2000			
Steel temperature in °C								
20	20	20	20	20	20	-		
37	54	70	85	113	163			
60	97	130	160	215	304	[Deg C]		
84	139	188	232	306	421	el De		
108	181	244	298	388	514	Tsteel		
132	222	296	359	459	589			
156	260	345	414	520	650	- ;		
179	298	391	465	573	699	•		
202	333	433	510	620	730	-		
225	367	472	552	661	743	-		
247	399	509	589	695	773	-		
268	430	542	623	721	816			
289	459	573	654	734	859	_		
	20 37 60 84 108 132 156 179 202 225 247 268	20 20 37 54 60 97 84 139 108 181 132 222 156 260 179 298 202 333 225 367 247 399 268 430	Steel tempe 20 20 20 37 54 70 60 97 130 84 139 188 108 181 244 132 222 296 156 260 345 179 298 391 202 333 433 225 367 472 247 399 509 268 430 542	Steel temperature in ° 20 20 20 20 37 54 70 85 60 97 130 160 84 139 188 232 108 181 244 298 132 222 296 359 156 260 345 414 179 298 391 465 202 333 433 510 225 367 472 552 247 399 509 589 268 430 542 623	Steel temperature in °C 20 20 20 20 20 37 54 70 85 113 60 97 130 160 215 84 139 188 232 306 108 181 244 298 388 132 222 296 359 459 156 260 345 414 520 179 298 391 465 573 202 333 433 510 620 225 367 472 552 661 247 399 509 589 695 268 430 542 623 721	Steel temperature in °C 20 20 20 20 20 20 37 54 70 85 113 163 60 97 130 160 215 304 84 139 188 232 306 421 108 181 244 298 388 514 132 222 296 359 459 589 156 260 345 414 520 650 179 298 391 465 573 699 202 333 433 510 620 730 225 367 472 552 661 743 247 399 509 589 695 773 268 430 542 623 721 816		

Neglecting the specific heat of insulation

Simple calculatin models:

 $R_{fi,d,t}(X_{d,fi}) > E_{fi,d}(F_{fi,d})$

- The resistance is based on analytical relations

Tensioned members $N_{fi,\theta,Rd} = k_{y,\theta} N_{R,d} \left[\gamma_{M,1} / \gamma_{M,fi} \right]$

N_{Rd} - the plastic design resistance of the cross-section for normal temperature design

 $k_{y\theta}$ - the reduction factor giving the effective yield strength of steel at temperature θ reached at time t

Compressed members

$$V_{b,fi,\theta,Rd} = \chi_{fi} A k_{y,\theta} f_{y} / \gamma_{M,fi}$$

- $X_{\rm fi}$ buckling coefficient
- A cross-section area
- $f_v yield limit$

 $\dot{k}_{y\theta}$ - the reduction factor giving the effective yield strength of steel at temperature θ reached at time t

Simple calculatin models:

 $R_{fi,d,t}(X_{d,fi}) > E_{fi,d}(F_{fi,d})$

- The resistance is based on analytical relations

Resistance in shear $V_{fi,t,Rd} = k_{y,\theta,web} V_{RD} \left[\gamma_{M,1} / \gamma_{M,fi} \right]$

 $V_{\rm Rd}$ - the plastic design resistance of the cross-section for normal temperature design

 $k_{y\theta,\,web}$ - the reduction factor giving the effective yield strength of the web, at temperature $\theta\,$ reached at time t

Resistance in bending

$$M_{fi,\theta,Rd} = k_{y,\theta} \left[\gamma_{M,0} / \gamma_{M,fi} \right] M_{Rd}$$

$$M_{fi,\theta,Rd} = k_{y,\theta} \left[f_y / \gamma_{M,fi} \right] W$$

 X_{fi} – buckling coefficient W – Strength modulus

f_v – yield limit

 $\dot{k_{y\theta}}$ - the reduction factor giving the effective yield strength of steel at temperature θ reached at time t

1 What are the basic requirements for a building to hold?

Structural materials and structural elements

2 Which are the main three types of actions?

Permanent, variable and accidental

3 What type of action is fire?

Accidental

4 How is the elevated temperature considered?

By temperature-time curves (Standard, Exterior and Hydrocarbons)

5 How is the fire resistance established from the structural point of view?

Resistance in fire > Load effect in fire

6 What are the three methods to evaluate the fire resistance in prescriptive design?

Tabulated data;Simple calculation models;Advanced calculation models

7 What is the basic cause of structural failure in fire?

Degradation of mechanical properties

8 What is the main characteristic that influences the temperature development? Section factor Am/V

9 What is the principle of temperature increase for unprotected steel ? Net heat flux (convection and radiation)

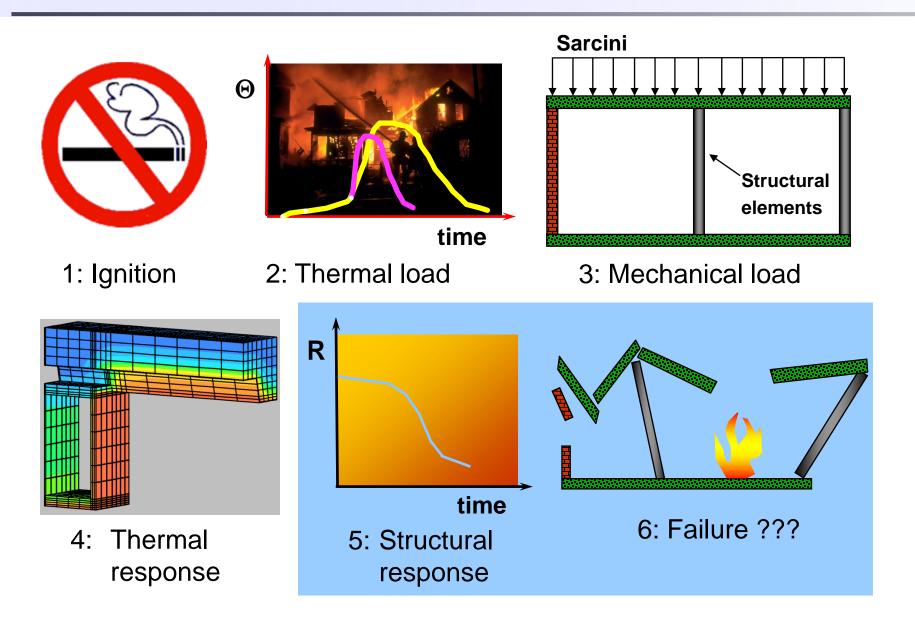
10 What is the principle of temperature increase for protected steel ? Temperature difference between insulation and steel

FRACOF

Benchmark: a standard or reference by which other(s) can be measured or judged [5] OCOSE C Input and output data should be presented in detail [6] Benchmark studies Verification of numerical models in fire engineering Number of "benchmark" use Benchmark studies Experimental validation of numerical [5] models in fire engineering

Mentions

1800


1850

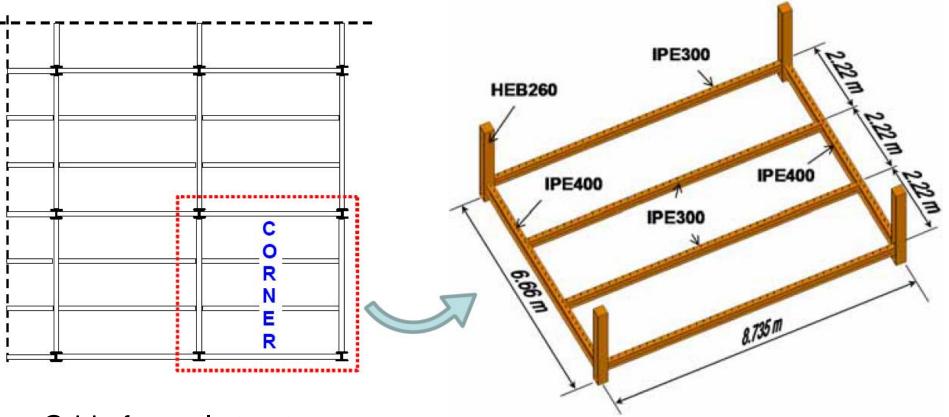
1900

1950

2010

Events during fire

FRACOF fire test

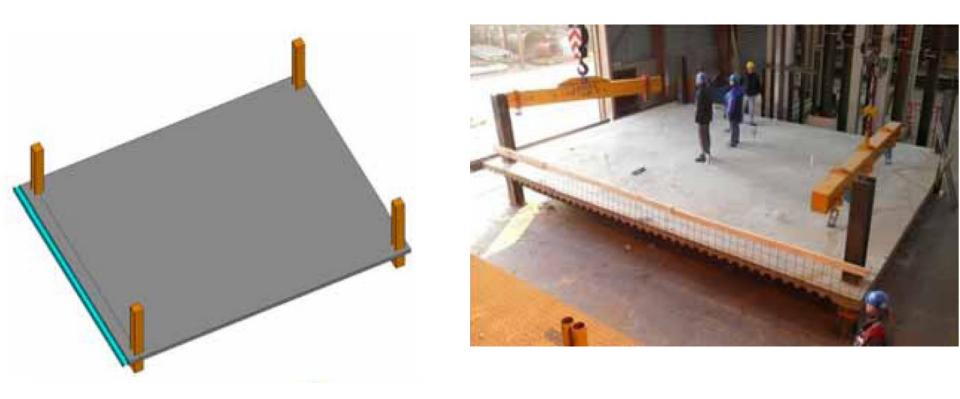

Objectives:

 To confirm same good performance under long fire duration (at least 90 minutes of ISO fire)

 To investigate the impact of different construction details, such as reinforcing steel mesh and fire protection of edge beams

- To validate different fire safety engineering tools

FRACOF fire test - Setup

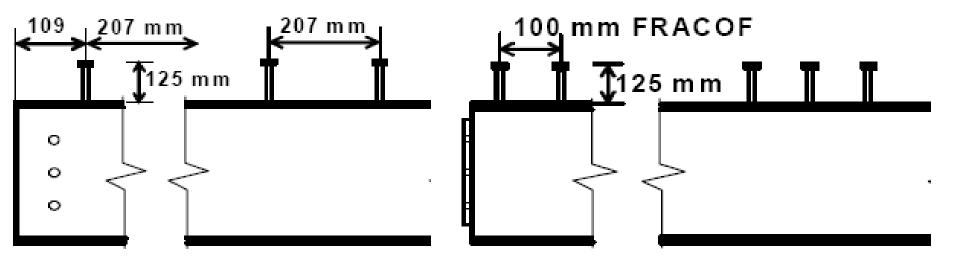


Grid of a real structure

Elements of tested structure

[3]

FRACOF fire test - Setup



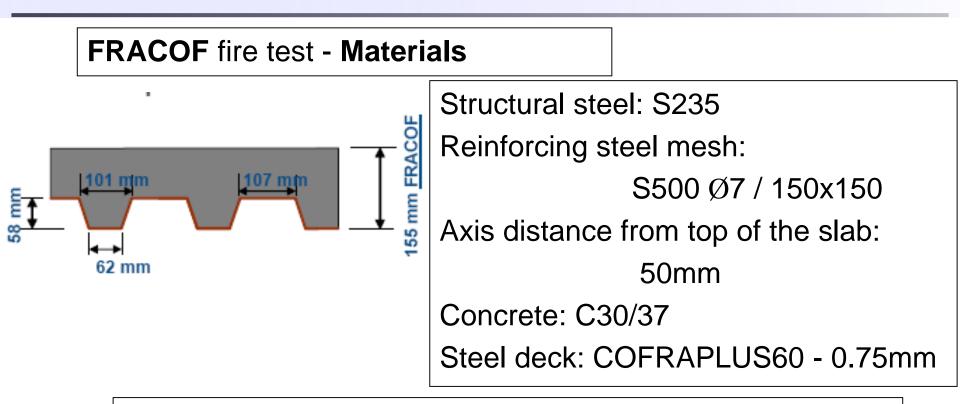
Composite floor

Real-scale specimen

FRACOF fire test

Beam to slab connections

Secondary beams IPE300


Primary beams IPE400

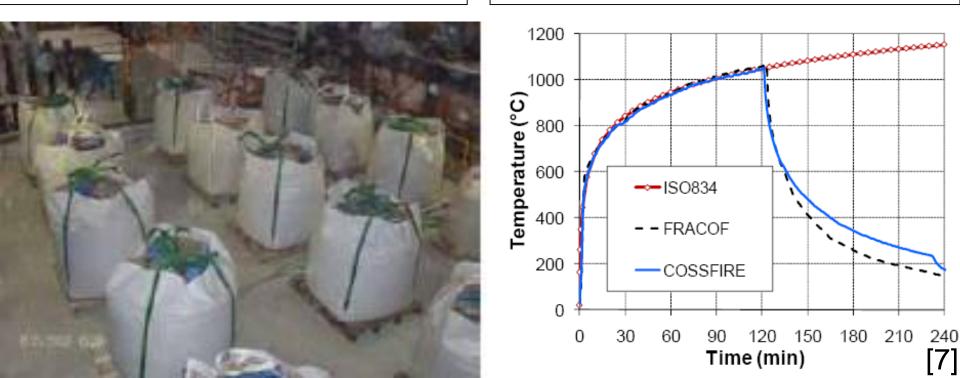
Full shear connection !

FRACOF fire test - **Connections**

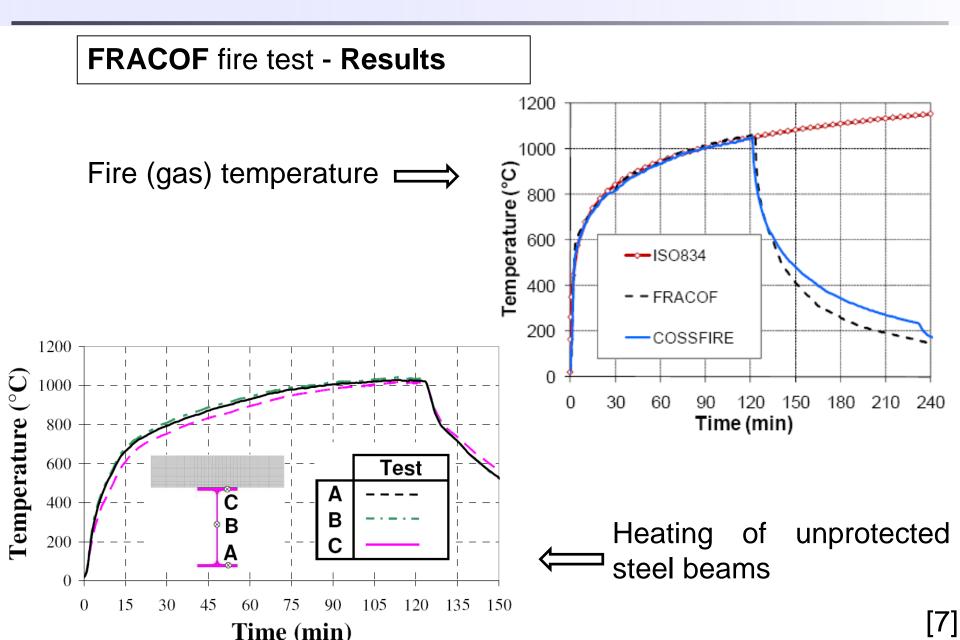
Beam to	Beam to beam		
Secondary beam	Primary beam	Dean to beam	
Double angle web cleats	Flexible end plate	Double angle web cleats	

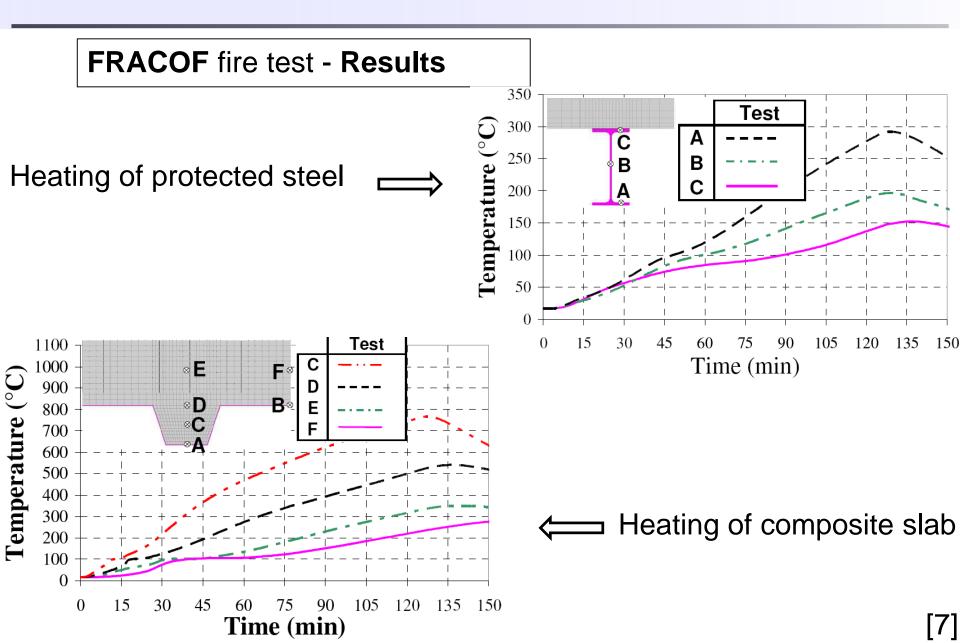
[3]

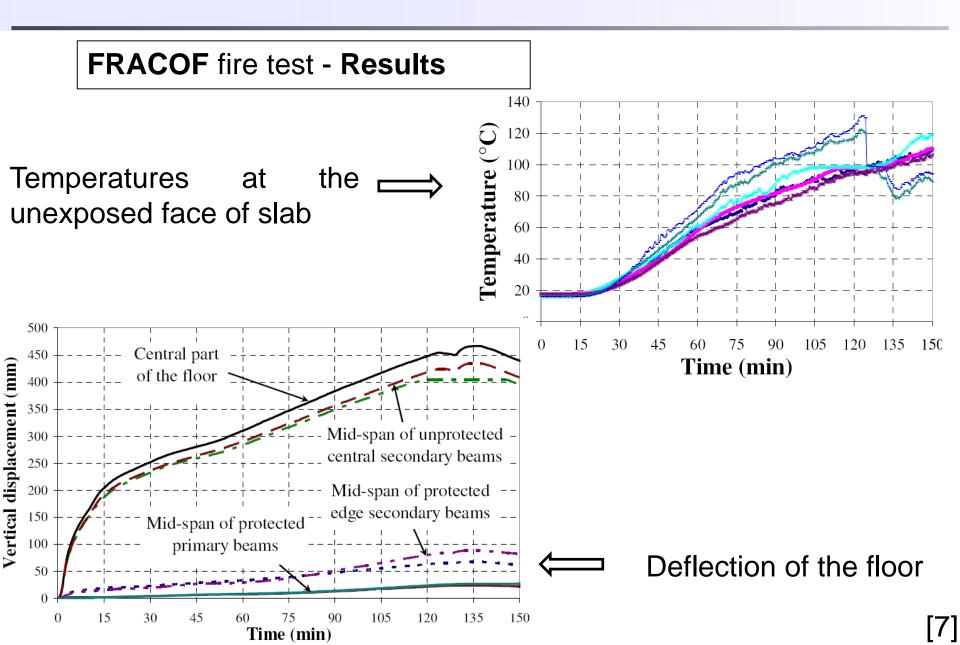
Secondary beams: f_y =311 N/mm² Primary beams: f_y =423 N/mm² Reinforcing steel mesh: f_y =594 N/mm² Concrete cylinder compressive strength: f_c =36.7 N/mm²

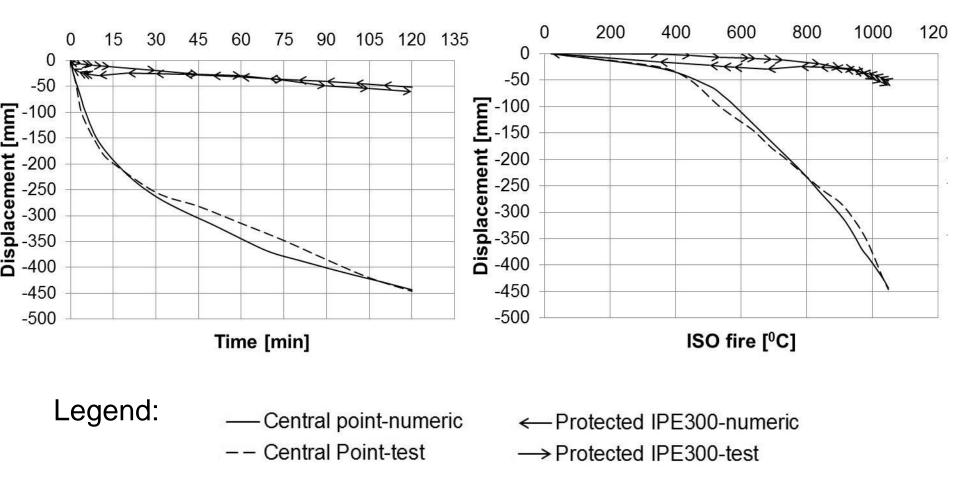

7

FRACOF fire test - Loads


Mechanical load

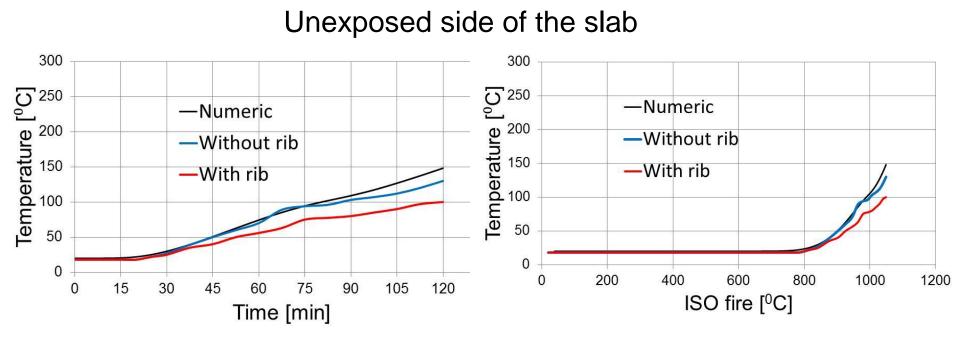

Fire load


15 sand bags x 1512 kg Equivalent uniform load: 390kg/m² 120 min of Standard fire curve ISO 834 and a cooling phase



Validation

Displacement


with respect to time

with respect to temperature

Validation

Temperature

with respect to time

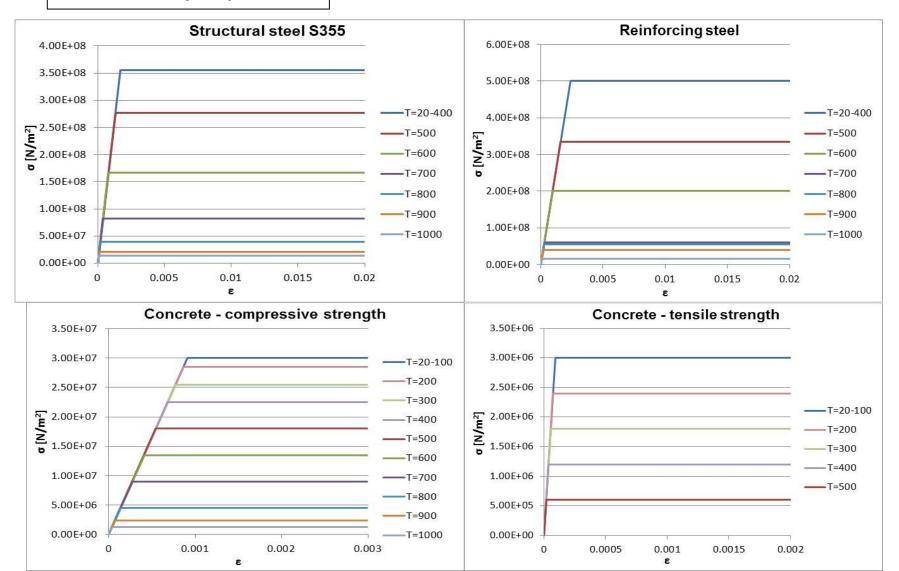
with respect to temperature

Materials properties

Consideration: only strength of materials is affected by temperature!!! (EN 1994-1-2)

Thermal analysis

Material	Density [kg/m ³]	Conductivity [W/m K]	Specific heat [J/kg K]
Steel	7850	40	550
Concrete	2400	0.9	1050

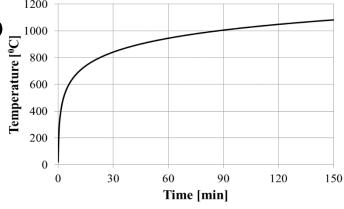

Mechanical ananlysis

Steel	E [N/m²]	ν	σ _y [N/m²]	α [1/C]
S235	2.1e11	0.3	235.0e6	1.4e-5
S355	2.1e11	0.3	355.0e6	1.4e-5
S500	2.1e11	0.3	500.0e6	1.4e-5

Concrete	E [N/m²]	ν	f _c [N/m²]	f _t [N/m²]	α [1/C]
C30/37	3.3e10	0.2	30.0e6	3.0e6	1.0e-5

Benchmark model

Materials properties



Benchmark model

Thermal load:

- constant temperature for unprotected beams,
- gradients through protected beams section,
- imported temperature field for slab

Mechanical load:

- sand bags: 3870 N/m²

Standard fire curve

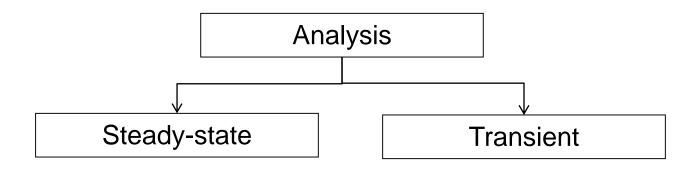
- selfweight: 3280 N/m²

7150 N/m² – uniform pressure on the slab

- Basics

Heat transfer analysis in Abaqus summary uncoupled heat transfer analysis

sequentially coupled thermal-stress analysis


fully coupled thermal-stress analysis,

fully coupled thermal-electric-structural analysis,

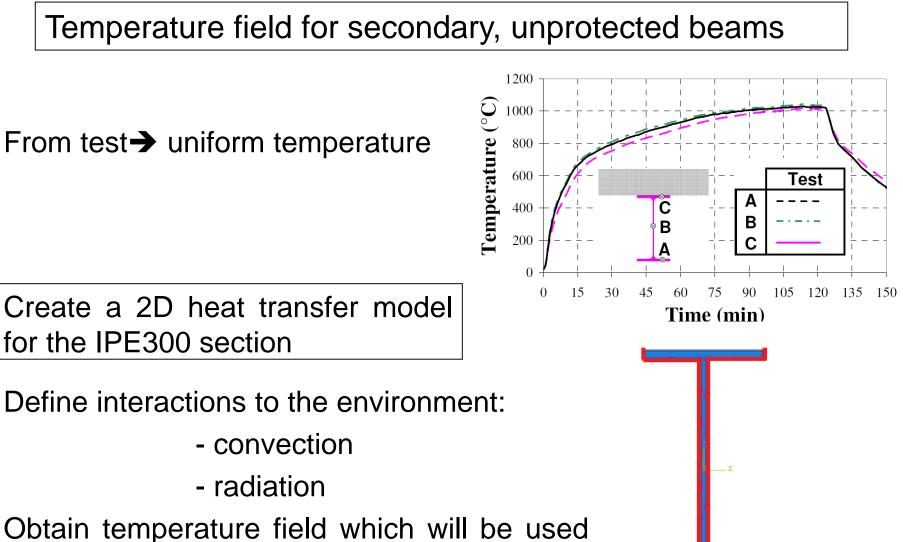
adiabatic analysis,

coupled thermal-electrical analysis

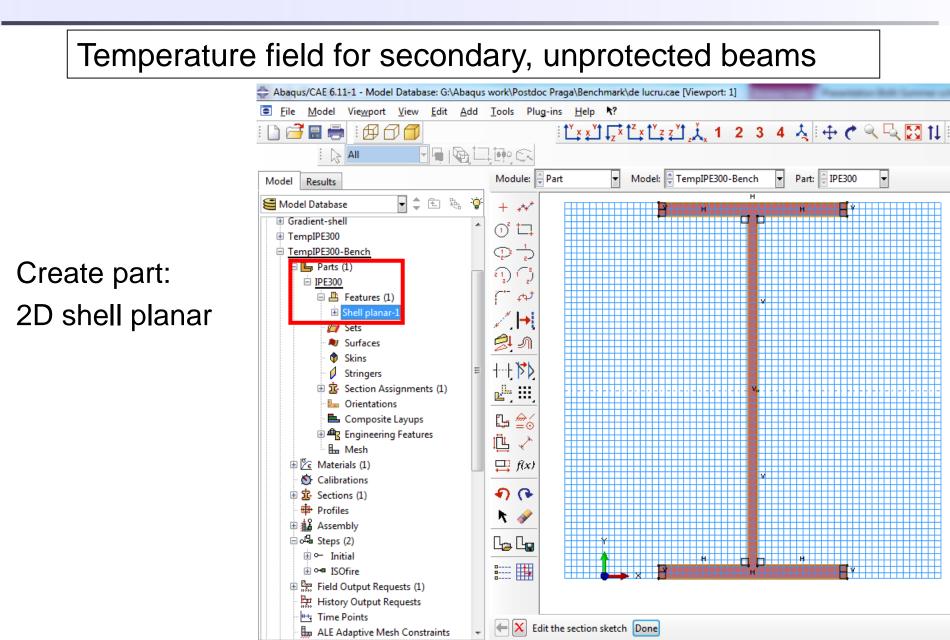
cavity radiation

[4]

- Basics


Settings

<u>ABAQUS has no settings for</u> <u>units system</u>


Measurement units are chosen by the user and should be consistent throughout all model(s)

For the benchmark the units are: N, m, s, ^{0}C

🔶 Edit Mode	el Attributes
Name:	TempIPE300-Bench
Model type:	Standard & Explicit
Description:	1
Do not us Physical Co	e parts and assemblies in input files
	zero temperature: -273.15
	oltzmann constant: 5.67E-008
Universa	gas constant:
Specify a	acoustic wave formulation:
Restart S	ubmodel
	ify these settings to reuse state data a previous analysis of this model.
	a from job:
Restart Loca	ation: 'Ĝ'
Step nam	ie:
Resta	art from the end of the step
Resta	art from increment, interval, iteration, or cycle:
() an	d terminate the step at this point
🔘 an	d complete the step
	OK Cancel

in the composite slab model

Temperature field for secondary, unprotected beams 🚔 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus work\Postdoc Praga\Benchmark\de lucru.cae [Viewport: 1] 토 Eile Model Viewport View Material Section Profile Composite Assign Special Feature Tools Plug-ins <u>H</u>elp ٨? i 👁 👁 🗢 🔚 🃰 i 许 🖆 🖓 Čặ Čặ Žặ Ži (1 - 2 - 3 - 4 - 🦄 i 🕂 🥐 🔍 🔍 🔯 輝 i I i 🗋 🗃 🗐 🚔 : A A 🗂 R All Module: Property Model: TempIPE300-Bench -• **V** Part: 🗍 IPE300 Model Results Material Library F 💲 🗈 🗞 🍟 23 σε 📰 🚝 Model Database 📥 Edit Material Gradient-shell İ- 🗖 Name: S235 TempIPE300 Define material: Description: TempIPE300-Bench 1L 🕅 İ. ⊨ ∑ Materials (1) Material Behaviors - conductivity ⁿ²n1 2 Conductivity Calibrations Density 🖶 🛅 - specific heat 🗄 🏦 Sections (1) Profiles İ. 0 🗄 🏰 Assembly - density 🗄 🖓 Steps (2) i III 1 General Mechanical Thermal Other 🗄 🖳 Initial i ↔ ISOfire li, Ito, Specific Heat Field Output Requests (1) 2 History Output Requests Type:
 Constant Volume
 Constant Pressure High Time Points Use temperature-dependent data + ALE Adaptive Mesh Constraints Number of field variables: 0 🚔 🗄 🧮 Interactions (2) Interaction Properties Data -1kg 📥 ۲Ľ Contact Controls Specific Contact Initializations 77 Heat 4 Constraints 1 550 讏 Connector Sections (XYZ) 신지 Amplitudes (3) 🕒 Loads BCs Predefined Fields (1)

Temperature field for secondary, unprotected beams

Define section property:

- Solid homogeneous

u for secondary,	unprotected beams
🐥 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Postdoc Praga\Benchmark\de lucru.cae [Viewport: 1]
Eile Model Viewport View Material S	ection <u>P</u> rofile <u>C</u> omposite <u>A</u> ssign Special Feat <u>u</u> re <u>T</u> ools Plug-ins <u>H</u> elp k ?
: 🗋 🗃 🖩 🖶 : 🗗 🗇 🎁 🛛 : 👁 🔍	▷ ● 🖫 🃰 🗄 Ў 💭 Ёх Ў ਟੁੱਟੋ Ў Žǎ 1 2 3 4 🙏 🗄 🕐 🔍 🖓
i 🕞 All 🔽 🖣 🔯 🗖	
Model Results Material Library	Module: Property V Model: TempIPE300-Bench V Part: IPE300 V
Model Database	
Gradient-shell	
E TempIPE300-Bench	11 📰
Parts (1)	
B B Calibrations	
□ □ □ Sections (1)	
IPE300	
dia Desclas	₩ Edit Section
🗈 🏭 Assembly	Name: IPE300
ि न्यु Steps (2)	Type: Solid, Homogeneous
⊕ ∽ Initial	
⊕	
History Output Requests	Plane stress/strain thickness:
Time Points	
📙 ALE Adaptive Mesh Constraints	+ /
Interactions (2)	
뮬 Interaction Properties	-+++
Contact Controls	
Constraints	
Connector Sections	(XY2)
${old H} \overline{{oldsymbol {\mathcal F}}}$ Fields	
Amplitudes (3)	
· 🕒 Loads	
BCs	
🕀 🤛 Predefined Fields (1) 🔍	

Temperature field for secondary, unprotected beams 🚔 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus work\Postdoc Praga\Benchmark\de lucru.cae [Viewport: 1] 들 <u>F</u>ile <u>M</u>odel Vie<u>w</u>port <u>V</u>iew Instance C<u>o</u>nstraint Feat<u>u</u>re <u>T</u>ools Plug-ins <u>H</u>elp **λ**? 🗅 🗃 🖥 🖶 A A 🗖 A + C i 🕞 All Module: Assembly Model: TempIPE300-Bench Step: 📮 Initial Ŧ Model Results - 1 E B **1** 🚝 Model Database Gradient-shell j. K TempIPE300 Create ť n² TempIPE300-Bench 🗄 💪 Parts (1) 🎜 🕫 🖉 instances: 🗄 🔀 Materials (1) Calibrations li, It, B Sections (1) - IPE300 2 Assembly 2 instances (1) PE300-1 00 (XYZ) 🗄 📇 Features (1) х 👉 Sets 21 I Nurfaces e Connector Assignments Generation Features 🗄 🖧 Steps (2) Image: Bield Output Requests (1) History Output Requests High Time Points ALE Adaptive Mesh Constraints interactions (2) 🖶 Interaction Properties Contact Controls Contact Initializations Constraints Connector Sections

Temperature field for secondary, unprotected beams

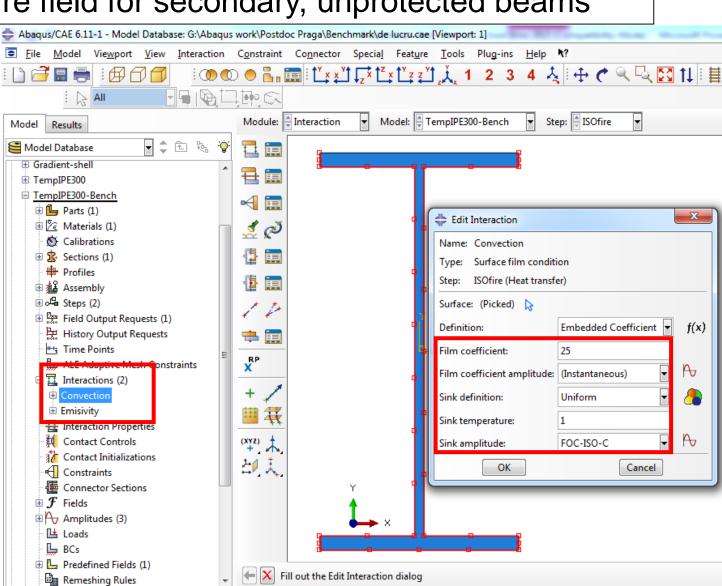
Define steps:

- Heat transfer

Basic Increm	entation 0	ther	
ype: 🔘 Autor	matic 🔘 Fixe	ed	
/laximum num	ber of increm	ents: 10000	
ncrement size:	Initial	Minimum	Maximum
][5
End step who	en temperatu	ire change is	ess than:
/lax. allowable f	temperature (change per in	crement: 20
/lax. allowable	emissivity cha	ange per incr	ement: 0.1

,		
🐥 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus work\Post	doc Praga\Benchmark\de lucru.cae [Viewport: 1]	and Ref. Conception in which the
<u>File</u> <u>Model</u> Viewport <u>View</u> Step <u>Output</u> Other	<u>T</u> ools Plug-ins <u>H</u> elp \?	
: 🗋 🗃 🖶 : 🗗 🗇 🎁 - : 👁 👁 🌢 🖡	$\blacksquare \overset{``}{\vdash} \overset{``}{\downarrow} \overset{``}{\downarrow} \overset{``}{\downarrow} \overset{`'}{\downarrow} \overset{''}{\downarrow} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota} \overset{''}{\iota}$	4 🧏 🕂 🅐 🍳
: 💫 All 🔄 🗐 🔯 🛄 👰		
Model Results Module:	Step Model: TempIPE300-Bench	▼ Step: Step:
🗑 Model Database 🛛 🗣 🗈 🗞 🍟 🗪	Edit Step	
 TempIPE300 TempIPE300-Bench Parts (1) Parts (1) Calibrations Calibrations Sections (1) Profiles Assempty o-Initial o-Initial o-Initial o-Initial o-Initial o-Initial o-Initial ALE Adaptive Mesh Constraints 	Type: Heat transfer Basic Incrementation Obscription: Response: Steady-state Time period: 7200	
 Interactions (2) Interaction Properties Contact Controls Contact Initializations Constraints Connector Sections 𝔅 /ul>	OK	Cancel
Remeshing Rules 👻		

Define fire curve:


- Amplitude

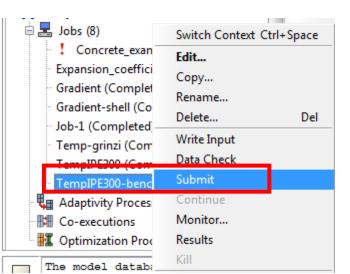
Temperature field for	secondary, unprote	ected beams
	Abaqus/CAE 6.11-1 - Model Database: G:Abaqus work/PA File Model Viewport View Interaction Constra All Constraints Model Results Model Model Database Constraints Model Calibrations Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Sections (1) Profiles Assembly Sections (1) Profiles Assembly Sections (2) Field Output Requests Time Points ALE Adaptive Mesh Constraints Time Points ALE Adaptive Mesh Constraints Contact Initializations Constraints Contact Controls Constraints Constraints Constraints Constraints Amplitudes (3) For Constraints	ostdoc Praga\Benchmark\de lucru.cae [Viewport: 1] aint Connector Special Feature Tools Plug-ins Help $\$ aint Connector Special Feature Tools Plug-ins Help $\$ \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow
	Amplitudes (3) FOC-ISO-C UNEAP ION MAINBEAMTEMP Loads BCs Creation Content of the second secon	9 420 625.78 10 480 645.46 11 540 662.85 12 600 678.43 13 660 692.54

Temperature field for secondary, unprotected beams

Define interactions:

- Convection (surface film condition)

•	Temperat	ure field for secc	onda	ary, u	npro	tec	ted beams	\$	
		🖶 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Post	tdoc Praga\Bench	mark\de lucru.c	cae [Viewp	port: 1]		
		Eile Model Viewport View Interaction	C <u>o</u> nstrain	t Co <u>n</u> nector	Specia <u>l</u> Feat <u>u</u>	<u>u</u> re <u>T</u> oo	ols Plug-ins <u>H</u> elp \?		
) 🔴 🖥	∎ Ľ×׼	↓ x t x t z	zŬ ₂Åx	1 2 3 4 🛓 🕂 (🕈 🔍 🖳 🔀	1↓ 🗄 🛔
		i 💫 All 🔽 🖣 👰 🗖	1000						
		Model Results	Module	Interaction	Model:		PE300-Bench 💌 Step: 🗎 ISOf	ire 🔻	
		Set Model Database 🖉 🖨 🗞 😧	1						
		Gradient-shell TempIPE300	= 🖬			۱ ۳	ð		
Defir	le	E TempIPE300-Bench							
intera	actions:	⊕ 🕒 Parts (1) ⊕ 🖉 Materials (1)	1 e		9	_			X
meere		S Calibrations					Edit Interaction		
- Rad	diation	Sections (1) 🖶 Profiles					me: Emisivity pe: Surface radiation		
		Assembly	1			m i i i	p: ISOfire (Heat transfer)		
(surfa	ace	⊕ ०५ ि Steps (2) ⊕ ॻङ्ग्र Field Output Requests (1)	14	*		· · · ·	face: (Picked)		
radia	tion)	History Output Requests	🖶 💼				diation type: () To ambient () (Cavity approximati	ion (3D only)
	,,,	Time Points	RP X			Emi	issivity distribution: Ur	niform	
		□ Interactions (2)	-	*	9	Emi	issivity: 0.7	1	
		Convection Emisivity		z		Am	abient temperature: 1		
		Interaction Properties		<u>¢</u>		Am	bient temperature amplitude: FC	C-ISO-C	P Po
		Contact Controls	(XYZ)	-			ОК	Cancel	
			ċĮ.↓						
		 			r T				
		Amplitudes (3)			► ×				
		· Le Loads			d	. de			
		🕀 🏧 Predefined Fields (1)		Fill and the Fill T					
		🛱 Remeshing Rules 🔹 👻		Fill out the Edit In	nteraction dialo	g			

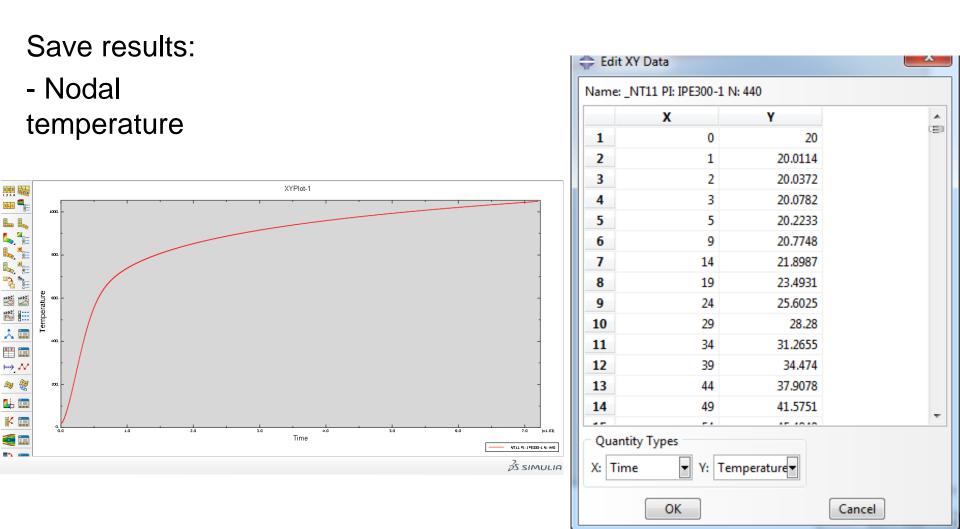

Т				ondary, unproted	cted beams	
	🐥 Abaqu	is/CAE 6.11-1 - Model Database: G:\Ab	aqus work\Postd	oc Praga\Benchmark\de lucru.cae [Viewport: 1]	Res 201 Competition, Mark - Marcard Proceedings	
	💿 <u>F</u> ile	<u>M</u> odel Vie <u>w</u> port <u>V</u> iew <u>S</u> eed	M <u>e</u> sh <u>A</u> daptivit	ty Feat <u>u</u> re <u>T</u> ools Plug-ins <u>H</u> elp \?		
	i 🗋 着	j 🔚 🖶 i 🗗 🗇 🔰 🛛 🗃	000 🛛 🔚	☴ : Ľ x x l ↓ ↓ 1 2 3	3 4 🙏 🕂 🥐 🔍 🔍 🔀 🖬 🛔 🍘	1
	Model	Results	Module	Mesh v Model: TempIPE300-Bench	▼ Object: ○ Assembly ◎ Part: ↓ IPE300 ▼	
		el Database 🔤 韋 🗞	¥ <u>L</u>		🜩 Element Type	
		mpIPE300	^ L		Element Library	
Define		mpIPE300-Bench ြ Parts (1)				
Donn		🖉 Materials (1)			Standard C Explicit Heat Transfer Piezoelectric	
mesh	•	S Calibrations			Geometric Order	
		Sections (1)			Linear Quadratic	
-DC2		Profiles	B			
		盐 Assembly ⊶ Steps (2)		-	Quad Tri	
		Field Output Requests (1)	📕 🚢 🖶			
		History Output Requests	1		Convection/Diffusion Dispersion control	
		🕂 Time Points		-	Element Controls	
		ALE Adaptive Mesh Constraints	-+ 🗸 📥		There are no applicable element controls for these sett	ings.
		且 Interactions (2) 뮬 Interaction Properties	= 🦾 🤸			
		Contact Controls				
		Contact Initializations	(XYZ)			
		Constraints	t:/ ↓			
		🖶 Connector Sections	4 <u>6</u>			
		\mathcal{F} Fields	_		DC2D4: A 4-node linear heat transfer quadrilateral.	
		← Amplitudes (3) 吐 Loads	₩.			
		BCs	X			
		Predefined Fields (1)	40x.		Note: To select an element shape for meshing,	
		Remeshing Rules			select "Mesh->Controls" from the main menu bar.	
		K Optimization Tasks				
		L Sketches		et the data using the Element Type dialog	ОК	Defau
	🛛 🗄 Ter	mperatura grinzi	- · · · ·	er the data using the clement Type dialog		

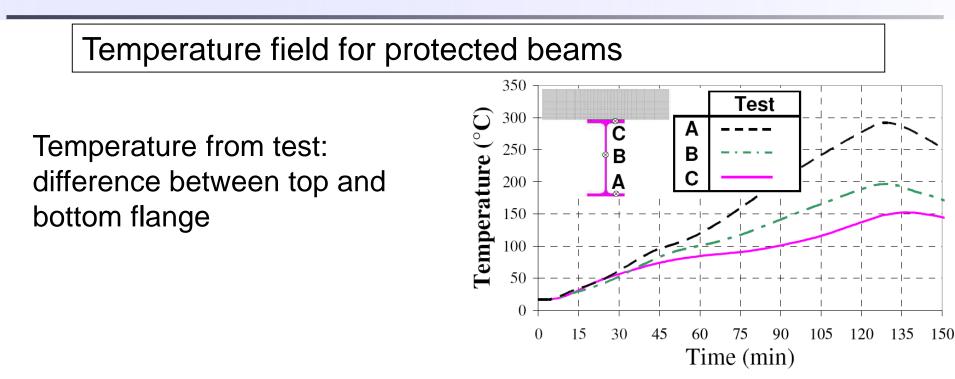
Tempera	ature field for sec	condary, unp	rotected beams	
	💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Postdoc Praga\Benchmark\de lucr	ru.cae [Viewport: 1]	a francisco de la companya de
	<u>File Model Viewport View Load BC</u>	Predefined Field Load Case Feature	e <u>T</u> ools Plug-ins <u>H</u> elp \?	
			′₂ ἔ¹ "ἶ, 1 2 3 4 🙏 🕂 ぐ 🔍 🔀 🕪	: 昌 昌 : (
	Model Results	Module: Load Vode	l: 🐺 TempIPE300-Bench 🔻 Step: 🛒 Initial 💌	
	Set Model Database	LL 📰 🛛 🚛 🚥	j	
		L 📰 🕴	Edit Predefined Field	23
Define initial	S Calibrations			
	🕀 🏦 Sections (1)		Name: Predefined Field-1	
temperature:	Profiles ⊕ ∰ Assembly		Type: Temperature Step: Initial	
	ter steps (2)	<u></u>	Region: (Picked)	
- Predefined	Field Output Requests (1)	<u> </u>		
field	History Output Requests		Distribution: Direct specification	▼ f(x)
field	But ALE Adaptive Mesh Constraints		Section variation: Constant through region	
	⊞ Interactions (2)	L	Magnitude: 20	
	日本 Interaction Properties	(XYZ)	*	
	Contact Initializations	20 I.		
	Constraints	↔ [*] , [*] **		
	 			
	Amplitudes (3)			
	Loads			
	BCs			
	Predefined Fields (1) Predefined Field-1 Predefined Field-1	t t	OK]
	Determination Tasks			
	L Sketches	g	e en anticipa de la companya de la companya de la companya de la companya de la companya de la companya de la c	
	Temperatura grinzi Annotations	Fill out the Edit Predefined Fie	eld dialog	

Temperature field for secondary, unprotected beams

Create job and run analysis:

- Jobs
- Submit

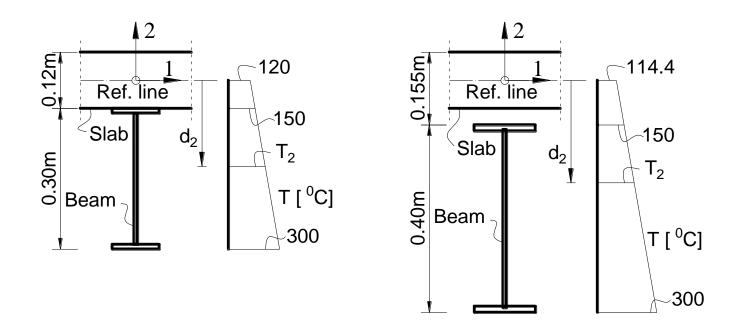



or secondary, un	protected beams
💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Postdoc Praga\Benchmark\de lucru.cae [Viewport: 1]
Eile Model Viewport View Job Adaptiv	vity <u>C</u> o-execution <u>O</u> ptimization <u>T</u> ools Plug-ins <u>H</u> elp X ?
: D 🗃 🖩 🖶 : 🛱 O 🗗	$[\stackrel{\downarrow Y}{\searrow} \stackrel{\chi}{} \stackrel{\downarrow Y}{\downarrow} \stackrel{\chi}{} $
All 🚽 🗐 🖓 🛄	
Model Results	Module: Job v Model: TempIPE300-Bench v Step: Initial
Set Model Database 🚽 🌲 🖗	📮 🧰 🖨 Edit Job
日 Interaction Properties	Rame: TempIPE300-bench
Contact Initializations	Model: TempIPE300-Bench
	Analysis product: Abaqus/Standard
	Description:
Amplitudes (3)	Submission General Memory Parallelization Precision
- 🕒 Loads	Job Type
BCs	
🕀 🤛 Predefined Fields (1)	 Full analysis
Remeshing Rules	 Recover (Explicit)
Optimization Tasks	🔘 Restart
Sketches	
🗄 Temperatura grinzi	Run Mode
Annotations	Background Queue:
	Type:
E Jobs (8)	C Submit Time
Concrete_example (Aborted)	
Expansion_coefficient (Completed)	 Immediately
Gradient (Completed)	🔘 Wait: hrs. min.
Gradient-shell (Completed)	At:
Job-1 (Completed)	
Temp-grinzi (Completed)	
TempIPE300 (Completed)	OK
TempIPE300-bench (Completed)	
Adaptivity Processes	
Co-executions	
📲 Optimization Processes 🔹 👻	

V

Temperature	e field fo	or second	ary, ι	unproted	cted bea	ms	
	💠 Abaqus/CAE 6.11-1	- Model Database: G:\Abaqu	is work\Postdoo	c Praga\B <mark>en</mark> chmark\de I	ucru.cae [Viewport: 1]		
	🔄 <u>F</u> ile <u>M</u> odel Vie	e <u>w</u> port <u>V</u> iew <u>R</u> esult <u>P</u> l	ot <u>A</u> nimate	Report Options To	ools Plug-ins <u>H</u> elp N	?	
	i 🗋 🗃 🖥 👼 i	፼፼፼፼	D 🗢 🖥 🖬	⊒ : t ^v x x ^v t ⊊ x t ^z x	¹ ∠zz [×] , <u>↓</u> 1 2	3 4 🙏 🕂 🥐 🔍	. L. 🖸
Save results:	AI		<u>.</u>				
N.L. 1.1	Model Results		Module: 🏮	Visualization OD	B: G:/Abaqus work/Pos	tdoc Praga/Benchmark/Tem	pIPE300-b
- Nodal	Session Data	🚽 🗘 🔁 🗞 🧯	123				
temperature	Output Database Output Database Spectrums (7) XYPlots XYData Paths	es (1)		NT11 +1.048e+03 +1.048e+03 +1.048e+03 +1.048e+03 +1.048e+03 +1.048e+03 +1.048e+03			
XY Data from ODB Field Output		(1)	×	+1.047e+03 +1.047e+03 +1.047e+03		💠 Create XY Data	x)
Steps/Frames Note: XY Data will be extracted from the active steps/frame /ariables Output Variables Position: Unique Nodal Click checkboxes or edit the identifiers shown next to Edit b Click checkboxes or edit the identifiers shown next to Edit b I THC: Heat hox vector I THC: Heat hox vector I THC: Heat hox vector I DEI 11: Nodal temperature DEI 11: Position fluxes				+1.047e+03 +1.047e+03 +1.047e+03		Source ODB history output ODB field output Thickness Free body Operate on XY data ASCII file Keyboard Path Continue Can	cel
Edit: NT11 Section point: All Select Settings			¥ 🔳	Ĭ→×	ODB: TempIPE300-ben Step: ISOfire Inc rement: 11441 (Step	n.odb Abaqus/Standard	i6.11-1
Save	Dismiss				Prin tery Var: NT11 Deformed Var: not set	Deformation Scale Facto	r: not set

Temperature field for secondary, unprotected beams



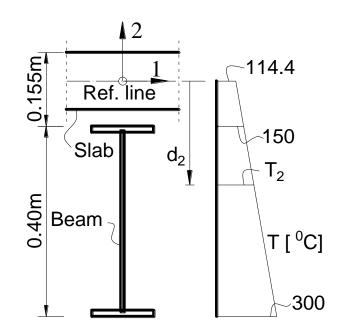
It is defined as a *predefined field* gradient through beam section in the composite slab model (no need for an additional model)

Temperature field for protected beams

Beam elements sections are defined function of a reference line

Temperature field for protected beams

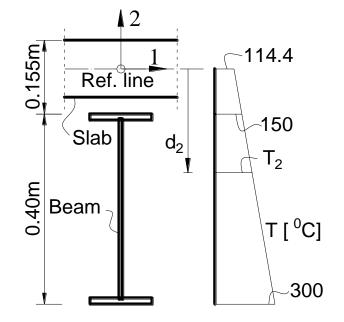
Input for *predefined field* of gradient through beam section:


- amplitude
- gradient

ela for protected	d beams	
File Model Viewport View Load BC I I I I I I I I I I I I I I I I I I I	Predefined Field Load Case Feature Tools Plug-ins Help \uparrow ? $\bigcirc \bigcirc $	iemn
Model Database Model Database Sections (4) Assembly Gala Steps (3)		
 B: Field Output Requests (2) History Output Requests Time Points ALE Adaptive Mesh Constraints Interactions Interaction Properties Contact Controls Contact Initializations 	Image: Prot-IPE400 Type: Temperature Step: Temp (Static, General) Region: (Picked) Distribution:	53 f(x)
$\begin{array}{c} \textcircledleft for the formula \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$	(XY2) \$ Section variation: Gradients through beam section Amplitude: 1 Amplitude: MainBeamTemp Met gradients 2	
 Prot-IPE400 T-initial Temp-IPE300-unprot Temp-Slab Remeshing Rules Optimization Tasks Sketches 	Note: The gradient method cannot be used for elements with thermal degrees of freedom.	
	 Abaqus/CAE 6.11-1 - Model Database: G:\Abac File Model Viewport View Load BC Model Results Model Database Sections (4) Profiles (3) Assembly Guide Steps (3) Field Output Requests (2) History Output Requests (2) History Output Requests Time Points ALE Adaptive Mesh Constraints Interactions Interactions Contact Controls Contact Controls Contact Initializations Contact Initializations Contact Initializations Constraints (1) Contact Initializations Contact Sections (1) Fields Amplitudes (5) Loads (1) Rec (3) Prot-IPE300 Prot-IPE300 Prot-IPE300-unprot Temp-Slab Remeshing Rules Optimization Tasks 	Model Results Model Variant1-mesh03 Step: T Model Database Model Model: Variant1-mesh03 Step: T Model Database Model: Model: Variant1-mesh03 Step: T Marcel Database Model: Variant1-mesh03 Step: T Marcel Database Marcel Database Marcel Database M

Temperature field for protected beams

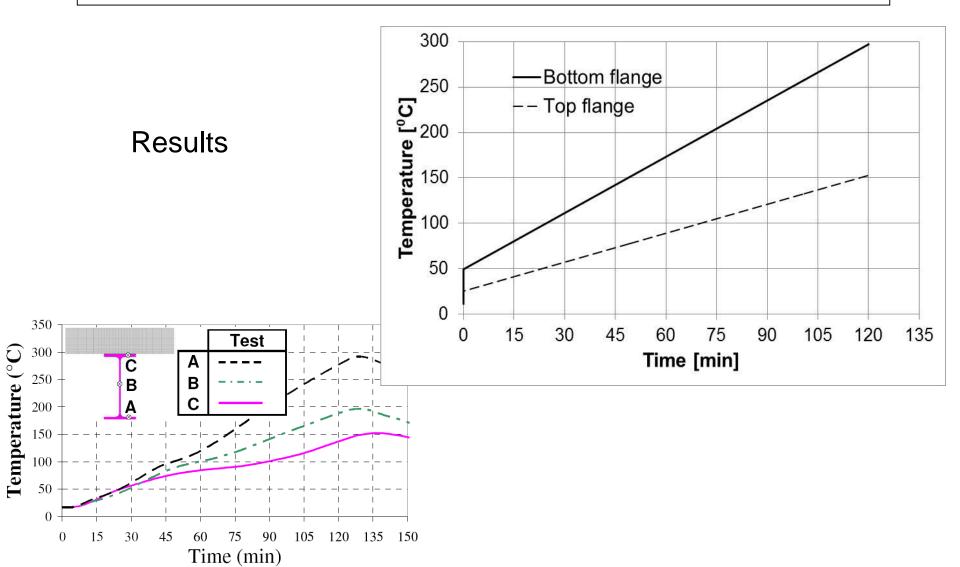
Name: MainBean	nTemp		
Type: Tabular			
Time span: Step t	ime 🔻		
Smoothing: 🔘 U	se solver d	lefault	
© S	pecify:		
Amplitude Data	Baseline	Correction	
Time/Freq	uency	Am	plitude
1 0			20
2 7200]	14.4


Amplitude is function of reference line temperature obtained by linear interpolation

Temperature field for protected beams

Determination of gradient

$$\theta_{ref} \left(1 + d_2 \cdot x \right) = \theta_2$$

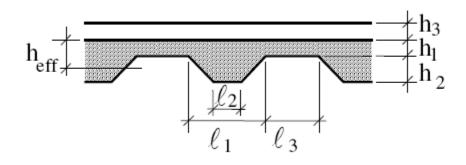


x – gradient

 θ_{ref} – temperature at reference line level,

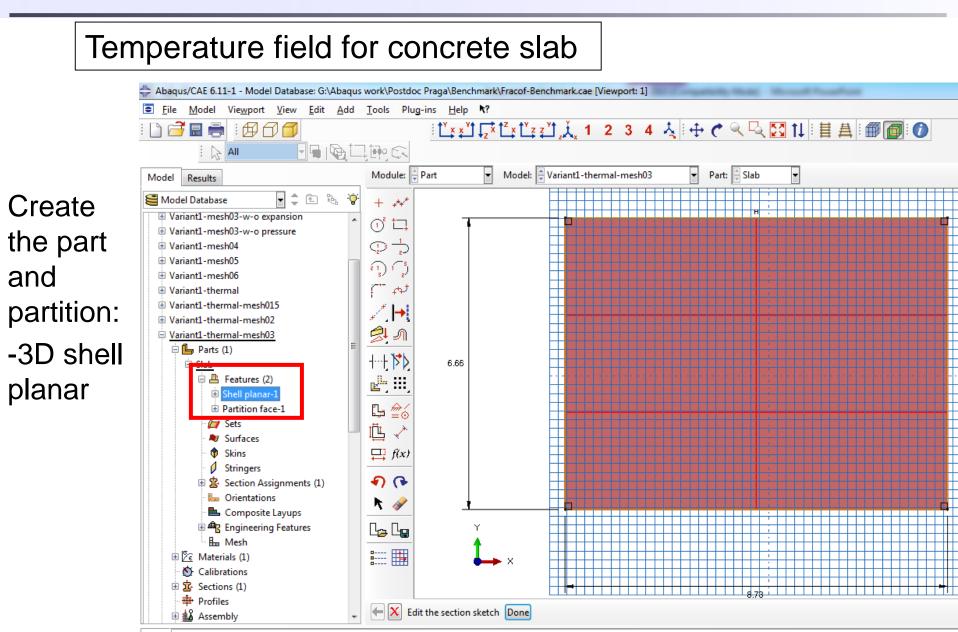
- d_2 distance from reference line to a point along direction 2;
- θ_2 temperature at distance d_2

Temperature field for protected beams


Temperature field for concrete slab

Sequentially coupled thermal-displacement analysis

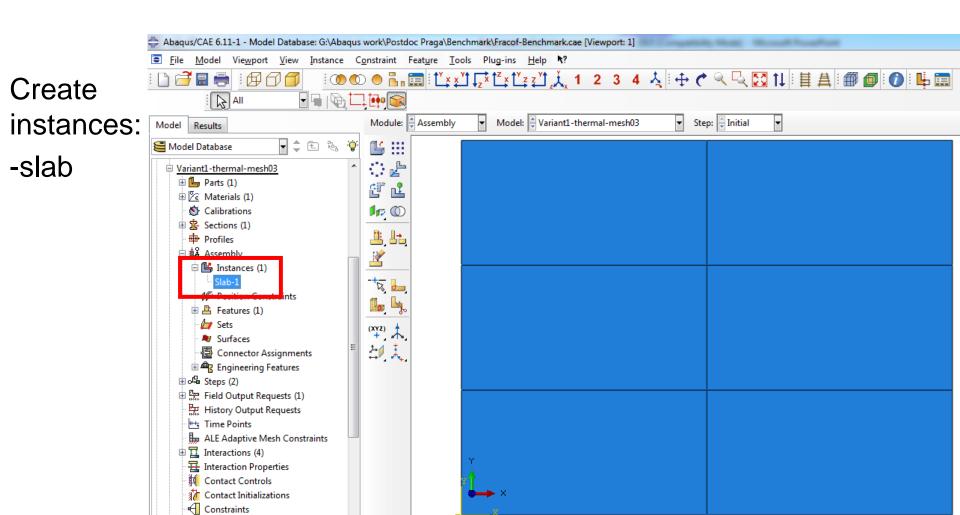
Create a separate heat transfer model (initial model for mechanical analysis – similar coordinates of slab)


It is considered an equivalent thickness of slab according to EN1994-1-2 Annex D

$$\begin{split} h_{eff} &= h_1 + 0,5 \ h_2 \bigg(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3} \bigg) \\ h_{eff} &= h_1 \bigg[1 + 0,75 \left(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3} \right) \bigg] \end{split}$$

for $h_2/h_1 \le 1,5$ and $h_1 > 40$ mm

for $h_2/h_1 > 1,5$ and $h_1 > 40$ mm

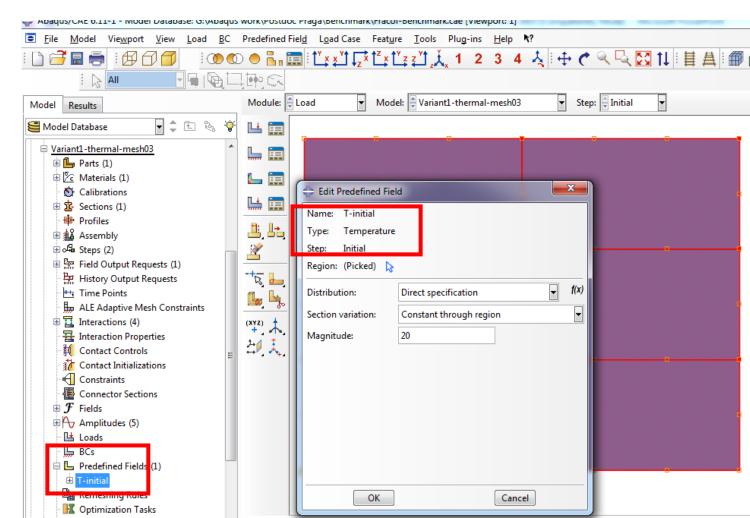

Define material:

- -conductivity
- -specific heat
- -density

Temperatu	ure field for concr	rete slab		
	: 🗋 🗃 🖩 👼 : 🛱 🗇 🗇 🕴	Section Profile Composi C C C C C C C C C C C C C C C C C C C	te <u>Assign Special Feature Tools Plants</u>	
e ial: luctivity ific heat	 Variant1-mesh03-w-o expansion Variant1-mesh03-w-o pressure Variant1-mesh04 Variant1-mesh05 Variant1-mesh06 Variant1-thermal Variant1-thermal-mesh015 Variant1-thermal-mesh02 Variant1-thermal-mesh03 	Name: Co Description	Rehaviors vity	
ity		Conducti Type: Iso + / Duse te		
	ALE Adaptive Mesh Constraints		nductivity 0.9	

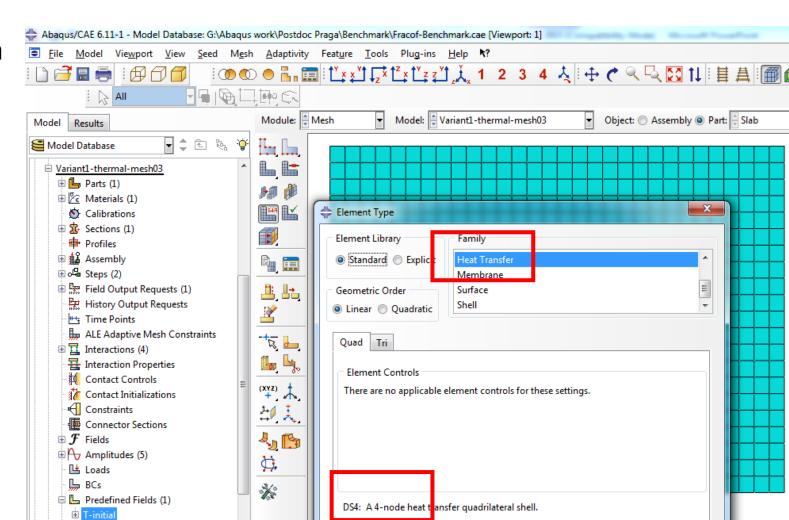
Temperatu	ire field for conci	rete s	slab
	💠 Abaqus/CAE 6.11-1 - Model Database: G:\Aba	qus work\Postdo	loc Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]
	E <u>F</u> ile <u>M</u> odel Vie <u>w</u> port <u>V</u> iew Mat <u>e</u> rial	Section Prof	ofile <u>C</u> omposite <u>A</u> ssign Specia <u>l</u> Feat <u>u</u> re <u>T</u> ools Plug-ins <u>H</u> elp N ?
	! 🗋 🗃 🖶 🖶 🗗 🗇 👘 . ! 👁	o o 7. j	氲 └x x ┘ レテ └x └x z ゙, i 2 3 4 🍇 🕂 ♂ 🤍 🖏 🕻
	Model Results Material Library		Property Variant1-thermal-mesh03 Part: Slab
Define section:		🖗 📶	🔶 Edit Section
Denne Section.	Variant1-mesh03-w-o expansion	1 🛊 🚍	Name: Slab
-thickness	 Variant1-mesh03-w-o pressure Variant1-mesh04 		Type: Shell / Continuum Shell, Homogeneous
-UNICKNESS	Variant1-mesh05	11 📰	
	Variant1-mesh06	- 📃 🚍	Section integration: During analysis Before analysis
-material	Variant1-thermal		Basic Advanced
. , ,.	 Variant1-thermal-mesh015 Variant1-thermal-mesh02 	⊕ <u>≡</u>	Thickness
-integration	Variant1-thermal-mesh02		Shell thickness: Value: 0.12
•	🗄 🦺 Parts (1)	1	Element distribution
rule	🕀 🎦 Materials (1)	. / 🚍	🔿 Nodal distribution:
• , ,•	Calibrations		
-integration	🖨 🥵 Sections (1)	<u> </u>	Material Concrete 🚽 🖄
•	• • Profiles	2	Thickness integration rule: 💿 Simpson 🔘 Guuss
points	🗄 🏭 Assembly	+ /	Thickness integration points: 13 🛒
	⊞ o4 Steps (2)	+1	Options:
	· 문화 Field Output Requests (1)	•••	
	Time Points	-+	OK
	LE Adaptive Mesh Constraints	L .	
(with out	Interactions (4)		Y
(without	물 Interaction Properties	(XYZ)	
reinforment, yet)	戦 Contact Controls が Contact Initializations		
iennonnent, yet)	Constraints	1 +1	

Temperature field for concrete slab

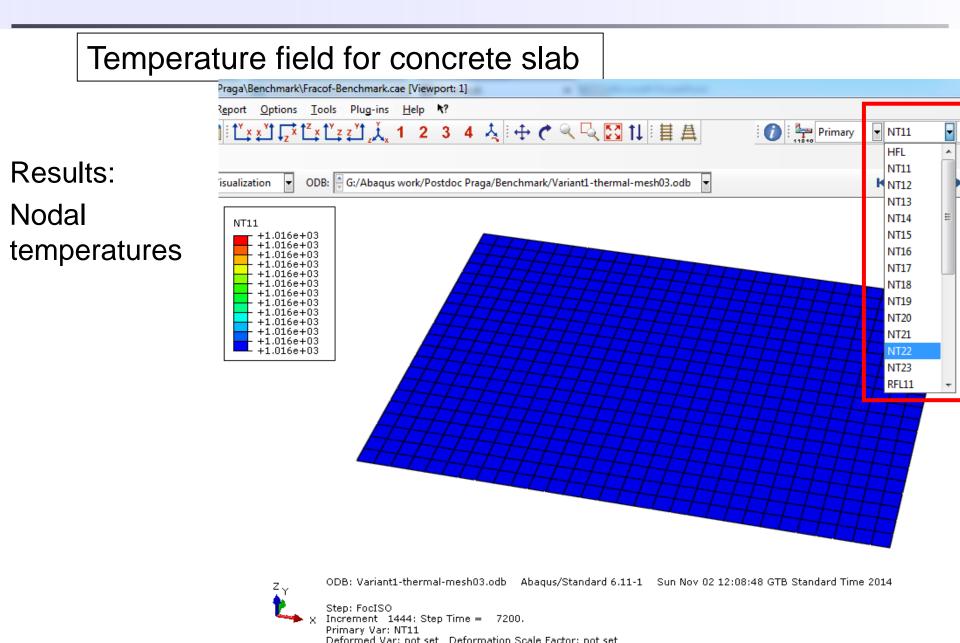

Temperature field for concrete slab 🚔 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus work\Postdoc Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1] 😑 <u>F</u>ile <u>M</u>odel Vie<u>w</u>port <u>V</u>iew <u>S</u>tep <u>O</u>utput Oth<u>e</u>r <u>T</u>ools Plug-ins <u>H</u>elp **N**? i 👁 🜑 🗢 🔚 🧱 i Čặ 🖄 Cặ Čặ Čặ Žặ 👗 1 - 2 - 3 - 4 - 🦶 i 🕂 🕂 🔍 🔍 🔀 輝 #07 i 🚰 🔡 🚔 🗖 🖷 I 🚱 🗖 🐏 🚳 R S Model: Variant1-thermal-mesh03 Step: 🚔 FocISO Module: 📮 Step -T T Model Results F 韋 🗈 🗞 🍟 🚝 Model Database •+= 🛅 📥 Edit Step x Define heat Variant1-thermal-mesh03 **____** Name: FocISO 🗄 🕒 Parts (1) Type: Heat transfer transfer step: <u>↓</u> Image: Baterials (1) Calibrations Basic Incrementation Other †<u>–</u> (Ē Sections (1) Description: -transient Profiles 0 Response: O Steady-state O Transient 👍 የ 🔥 👝 🗄 ஷி Steps (2) (XYZ) -time Time period: 7200 🗄 🗝 Initial 을/ 🗼 Nlaeom: Off 🗄 🕶 🛛 FocISO 📥 Edit Step Field Output Requests (1) History Output Requests Name: FocISO H Time Points Type: Heat transfer Handblock Adaptive Mesh Constraints Basic Incrementation Other Interactions (4) Type:
Automatic
Fixed Interaction Properties Contact Controls Maximum number of increments: 100000 🚺 Contact Initializations Initial Minim Constraints Increment size: 1 0.02 5 Connector Sections End step when temperature change 🗄 牙 Fields Amplitudes (5) Max. allowable temperature change per increment: 25 Loads Max. allowable emissivity change per increment: 0.1 BCs Predefined Fields (1) Remeshing Rules Optimization Tasks OK Cancel C Sketcher

Temperature field for concrete slab

	Edit Interaction	-	≑ Edit Interaction	-	×	
Define interactions:	Name: Conv-heated Type Surface film conditi Step: FocISO (Heat transf		Name: Conv-unheated Type: Surface film condit Step: FocISO (Heat transf			
convection for heated	Surface: (Picked)		Surface: (Picked)			
and unheated sides	Definition: Film coefficient:	Embedded Coefficient 💌 25	Definition: Film coefficient:	Embedded Coefficient 🔽	f(2	
radiation for heated and	Film coefficient amplitude:	(Instantaneous)	Film coefficient amplitude:	(Instantaneous)	Ρ	
unheated side	Sink definition:	Uniform 👻	Sink definition:	Uniform	2	
	Sink temperature: Sink amplitude:	1 Foc-ISO-C	Sink temperature: Sink amplitude:	20 (Instantaneous)	R	
🕆 Edit Interaction	🔶 Edit Interaction		СК	Cancel		
Nam : Rad-heated Type Surface radiation Step: FocISO (Heat transfer)	Name Rad-unheated Type: Surface radiation Step: FocISO (Heat transfer)					
Surface: (Picked) 📐	Surface: (Picked) 🔓					
Radiation type: To ambient Cavity approximation (3D only) Emissivity distribution: Uniform $f(x)$ 	Radiation type: To ambient Emissivity distribution:		Donly) f(x)			
Emissivity: 0.7	Emissivity:	0.7				
Ambient temperature: 1	Ambient temperature:	20				
Ambient temperature amplitude: Foc-ISO-C	Ambient temperature amplitud	(Instantaneous)	\sim			
OK Cancel	ОК	Cancel				


Temperature field for concrete slab

Define initial temperature: -predefined field – constant through region



Temperature field for concrete slab

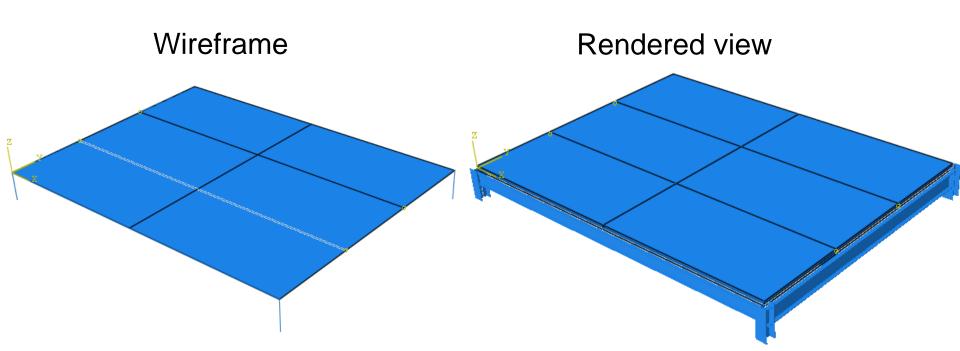
Define mesh and finite elements: DS4 (0.3 m)

Temperature field	for concrete slat	C
•	💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Postdoc Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]
	🔄 <u>F</u> ile <u>M</u> odel Vie <u>w</u> port <u>V</u> iew <u>J</u> ob <u>A</u> dapti	ivity <u>C</u> o-execution <u>Optimization</u> <u>T</u> ools Plug-ins <u>H</u> elp X ?
	: 🗋 🗃 🖶 🖶 : 🗗 🗇 🎁	[Ľx x [¥]] ⊑ ^x [Ľx [Ľz z [¥]] ₂ , 1 2 3 4 Å i ↔ 🥐 🤄
Run analysis:	Model Results	Module: Job Variant1-thermal-mesh03 Step:
	😫 Model Database 🔄 🌲 🤤	📮 🧰
Create job and	↓ Optimization Tasks ↓ Sketches	
submit	 Variant1-thermal-mesh04 Variant1-thermal-mesh05 	
	Variant1-thermal-mesh06	
	Annotations	🖨 Edit Job
Edit Job	📮 🛃 Jobs (16)	Name: Variant1-thermal-mesh03
	Variant1 (Aborted)	Model: Variant1-thermal-mesh03
lame: Variant1-thermal-mesh03	Variant1-mech0 5 (Completed) Variant1-mesh02 (Completed)	Analysis product: Abaqus/Standard
Aodel: Variant1-thermal-mesh03	Variant1-mesh03 (Completed)	Description:
	Variant1-mesh03-faraExpans (Completed)	
analysis product: Abaqus/Standard	Variant1-mesh03-faraPressure (Completed)	Submission General Memory Parallelization Precision
escription:	Variant1-mesh04 (Completed)	Job Type
	Variant1-mesh05 (Completed) Variant1-mesh06 (Completed)	 Full analysis
Submission General Nemory Parallelization Precision	Variant1-thermal (Completed)	Recover (Explicit)
V Use multiple processors 🛛 3 🗮	Variant1-thermal-mesh015 (Completed)	© Restart
Abaqus/Explicit	 Variant1-thermal-mesh02 (Completed) Variant1-thermal-mesh03 (Completed) 	Run Mode
Number of domains: 3	Variant1-thermal-mesh05 (completed) Variant1-thermal-mesh05 (Completed) Variant1-thermal-mesh05 (Completed)	Background Queue: Host name: Type:
Parallelization method: Domain	Variant1-thermal-mesh06 (Completed)	Submit Time
	Adaptivity Processes	Immediately
Multiprocessing mode: Default 💌	Optimization Processes	🔿 Wait: hrs. min.
		At:

Temperature [°C]

Time [min]

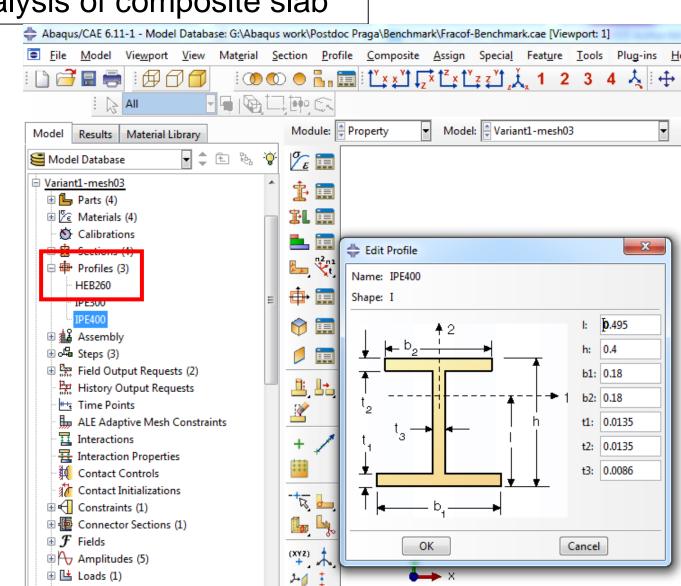
Temperature field for concrete slab **Results:** Nodal temperatures -Botto → Top


105 120 135

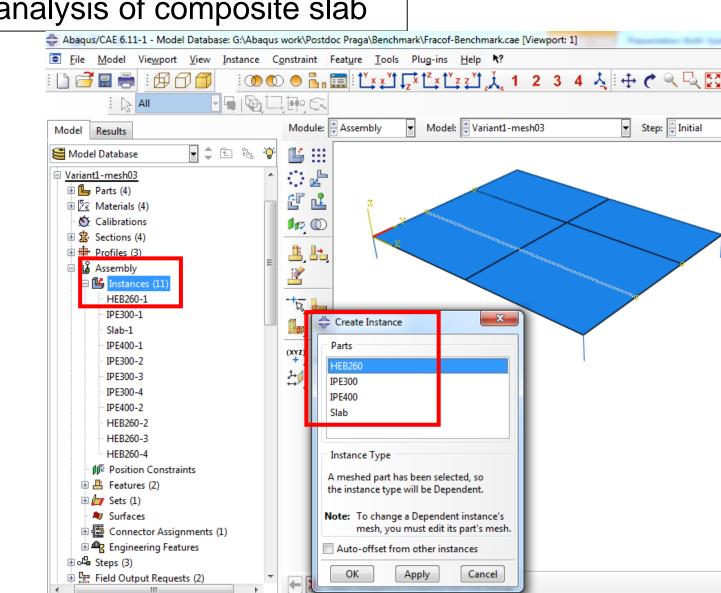
Steps/Fra	from ODB Field Output	
		steps/Fram
Variables	Elements/Nodes	
Output	/ariables	
Position:	Unique Nodal 🗨	
Click che	ckboxes or edit the identifiers shown next to Edit below.	
	HFL: Heat flux vector	
V	NT11: Nodal temperature	
V	NT12: Nodal temperature	
V	NT13: Nodal temperature	
V	NT14: Nodal temperature	
	NT15: Nodal temperature	
	NT16: Nodal temperature	
Edit: NT	11,NT12,NT13,NT14,NT15,NT16	
Section p	oint: O All O Select Settings	
	Save Plot Dis	

Structural analysis of composite slab

Starts from a saved as model of thermal analysis of concrete slab


All structural elements, beams and columns, are defined as linear *wire element*

Structural	analysis of composite slab	
Ondotara	Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus work\Postdoc Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]	
Add the reinforcement of the concrete	 File Model Viewport View Material Section Profile Composite Assign Special Feature Tools Plug-ins Help N? Model Patabase Variant1-mesh03 HEB260 	
slab	 IPE300 IPE400 Slab Scalibrations IPE300 IPE300 IPE400 IPE300 IPE400 <li< th=""><th></th></li<>	
	 Abstruction of the second secon	


Structural analysis of composite slab

Define "profiles" for the wire elements and orientation

Structural analysis of composite slab

Create "instances" from parts for all elements and "construct" the structure

Structural analysis of composite slab

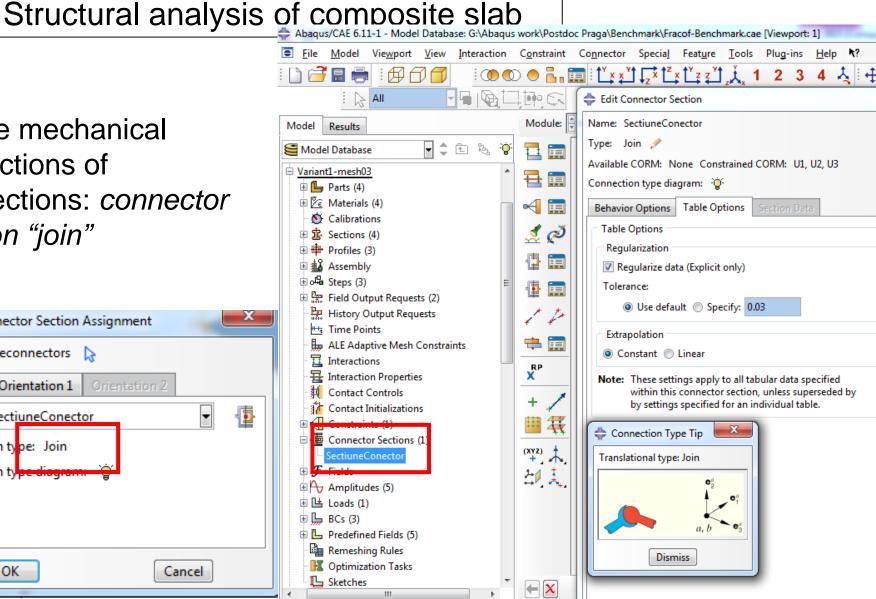
- Define steps for analysis:
- -<u>for mechanical</u> loading
- -for temperature influence

Both steps are "Static, General"

liai	ysis or composit	C 210	
	💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqu	us work\Postdo	c Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]
	Eile Model Viewport View Step Out		
	: 🗋 🗃 🖶 🖶 🗗 🗇 🚺 🛛 : 🌰 🤅	D 🗢 🖥 🕻	≣⊨Ŭ≭≱Ŭ⋤ [≭] Ŭ҂Ŭ≴≵Ŭ _* 1234 🖄 🕂 🕈 🤍 🖳
		<u>, i e</u> i 🧟	
	Model Results	Module:	A Step Model: Variant1-mesh03 Step: Load
	🝯 Model Database 💽 🌲 🤤) ^e 🐽 🥅	🜩 Edit Step
	Variant1-mesh03 Description of the second s	È 🦕 🥅	Name: Load
	🗄 🖉 Materials (4)	1.1.1.1 III	Type: Static, General
	Sections		Basic Incrementation Other
	🗄 🤹 Sections (4)	-+	Description:
		b , b ,	Time period: 1
	⊞ ∰ Assembly । ्र⊶ Steps (3)	-	
	± ⊶ Initial	(XYZ)	Nlgeom: On 🤌
	🕀 🕶 Load	1 to 1	Automatic stabilization: None
	i emp		
	the state of the s		Trained reliabatic basting offects
	History Output Requests		🜩 Edit Step
	Hand ALE Adaptive Mesh Constraints		Name: Load
	Haraction Properties		Type: Static, General
	Contact Controls		Basic Incrementation Other
	Contact Initializations		Type: 🔘 Automatic 🔘 Fixed
	B ← Constraints (1)		Maximum number of increments: 100
	 ⊕ Connector Sections (1) ⊕ <i>F</i> Fields 		
	Amplitudes (5)		Initial Minimum Maximum
	⊕ 吐 Loads (1)		Increment size: 0.05 1E-005 0.05
	⊞ 🛄 BCs (3)		
	🕀 📴 Predefined Fields (5)		
	Remeshing Rules	-	OK
	▲ III ▶		

- Define steps for analysis:
- -for mechanical loading
- -<u>for temperature</u> <u>influence</u>

liysis of composite sia	
💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus work\Posto	loc Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]
Eile Model Viewport View Step Output Other	
: 🗋 🗃 🚍 : 🗗 🗇 🎁 🛛 : 👁 👁 🖷 🖡	氲┆Ů҉ӽЎҪ҈ ^Ҟ ӖӽѶ҉ӡЎ _ѧ Ҳ҉1 2 3 4 💐 🕂 🗢 🤍 🖳
Model Results Module:	▲ Step Model: ▲ Variant1-mesh03 Step: ▲ Temp
See Model Database 🚽 🖨 🔃 🗞 😧 🕶 🧱	🜩 Edit Step
□ <u>Variant1-mesh03</u>	Name: Temp
Materials (4)	Type: Static, General
Calibrations	Basic Incrementation Other
Sections (4) The profiles (3)	Description:
🗄 🖶 Profiles (3)	Time period: 7200
$\exists \sigma^{\text{Leff}} \text{Steps (3)} = (xyz) + (xyz)$	
	Automatic stabilization: None
	🚔 Edit Step
History Output Requests	
Time Points	Name: Temp
ALE Adaptive Mesh Constraints	Type: Static, General
Heraction Properties	Basic Incrementation Other
Contact Controls	
Contact Initializations	Type: Automatic Fixed
 ⊕ ← Constraints (1) ⊕ 極 Connector Sections (1) 	Maximum number of increments: 100000
$\oplus \mathcal{F}$ Fields	Initial Minimum Maximum
H 🕂 Amplitudes (5)	
■ 吐 Loads (1) □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	Increment size: 0.05 1E-005 5
 BCs (3) Predefined Fields (5) 	
🛱 Remeshing Rules 🔻	OK Cancel
۲ (III)	Cancer

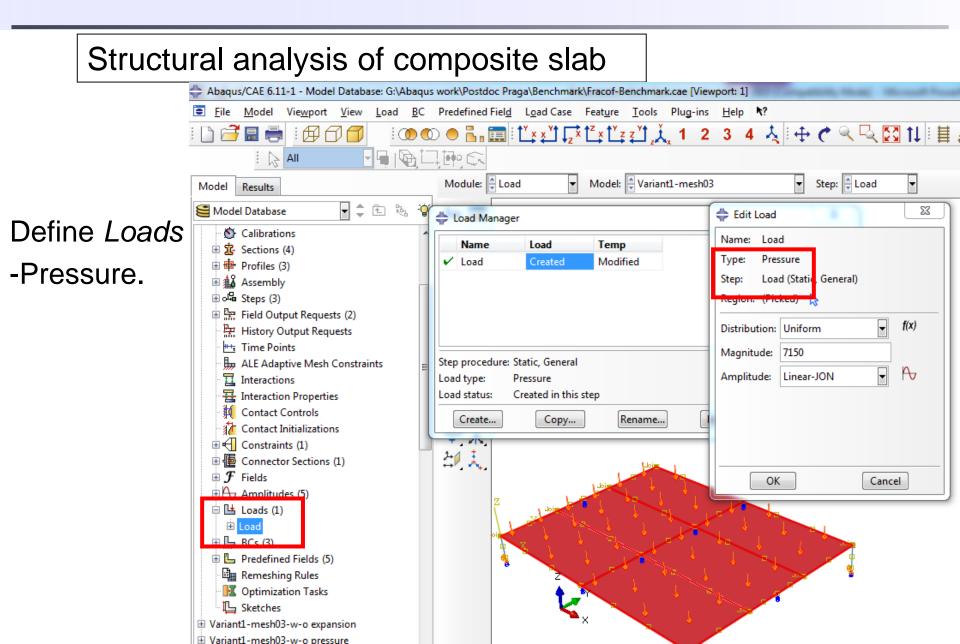

Structural analysis of composite slab

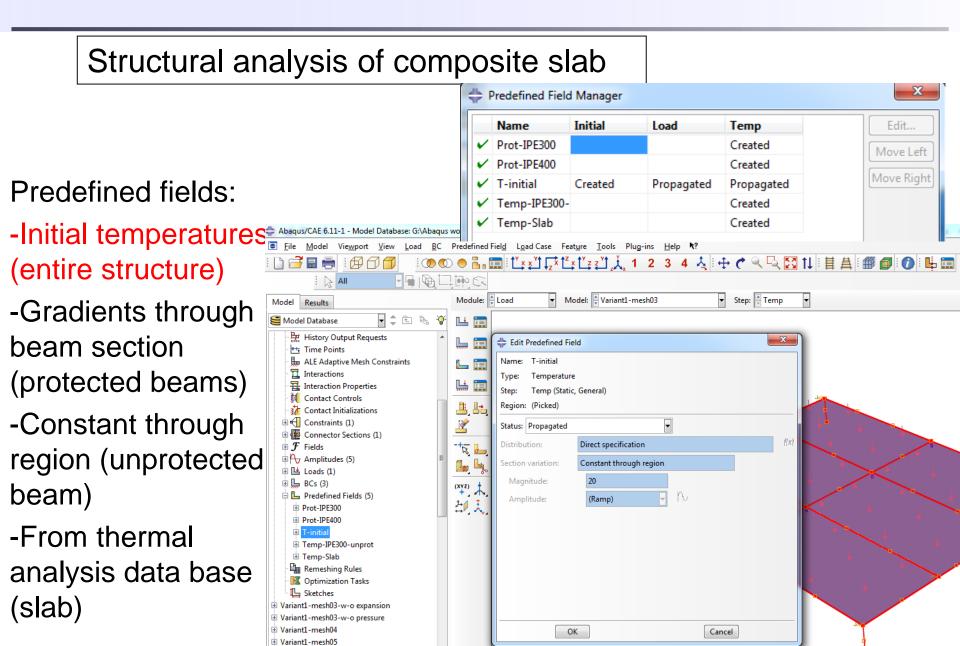
Define mechanical interactions between slab and beams: constraints

💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Postdoc Pra	iga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]
		nector Special Feature Tools Plug-ins Help N ?
: 🗋 🗃 🖶 : 🗗 🗇 🎁		Ľặ≱Ť⊊ ^{\$} Čặ Čặ Žặ Ž ↓ 1 2 3 4 🏹 ! ↔ 🕈 🤍 🔯 🎶 ! 🗄 ឝ ! 🕮 🗇 ! 🕼 📖
i 🔓 🗛 🗐 📮 🖓 🛄	1 in cr	
Model Results	Module: 🛓 Inte	eraction Variant1-mesh03 Step: Temp
🝯 Model Database 🔄 🖨 🗞 🍟	1	
□ Variant1-mesh03 □ □ Parts (4)	= 🔳 📗	+ Edit Constraint
Parts (4) E Materials (4)	- ■	Name: Slab-grinzi
Calibrations		Type: Tie
🗄 🤹 Sections (4)	🛃 🧭	Master surface: (Picked)
Profiles (3)	1	Slave surface: (Picked)
Assembly		
⊕ ०म्बि Steps (3) ⊕ ष्ट्रिक Field Output Requests (2)	1	Discretization method: Node to surface
- History Output Requests	A to	Exclude shell element thickness
	14	Position Tolerance
LE Adaptive Mesh Constraints	🖶 🚍 📗	Use computed default
Interactions		Specify distance:
- 🖶 Interaction Properties	RP X	
Contact Controls	+ /	Note: Nodes on the slave surface that are considered to be outside the position
Context Laiting tions	+	tolerance will NOT be tied.
Constraints (1)	🏼 👯	✓ Adjust slave surface initial position
Slab-grinzi 田匾 Connector Sections (1)	(XYZ)	
⊕ <i>F</i> Fields		✓ Tie rotational DOFs if applicable
Amplitudes (5)	±∕ 1	Constraint Ratio
🗄 🕒 Loads (1)		Use analysis default
⊕ 🖕 BCs (3)		O Specify value
🕀 🏣 Predefined Fields (5)		
Remeshing Rules		OK Cancel
Optimization Tasks		

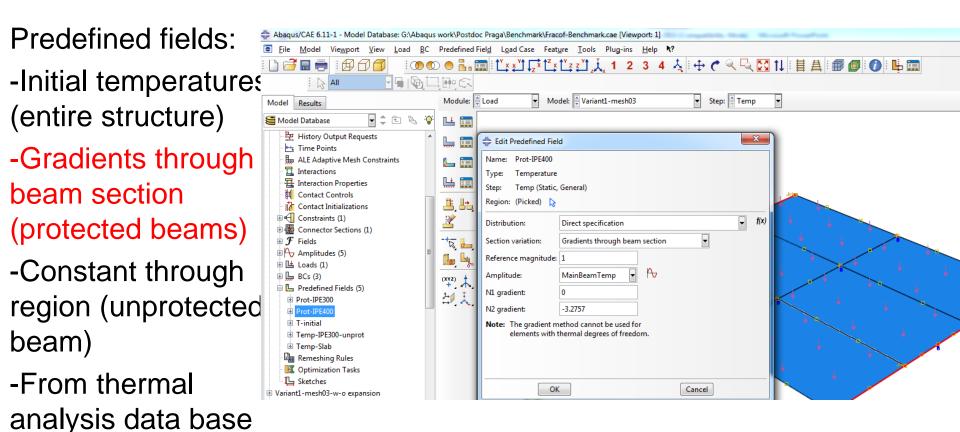
Define mechanical interactions of connections: connector section "join"

🖶 Edit Connector Section Assignment					
Region: wireconnectors 🔓					
Section Orientation 1 Orientation 2					
Section: SectiuneConector					
Connection type: Join					
Connection ty pe diagram (
OK Cancel					

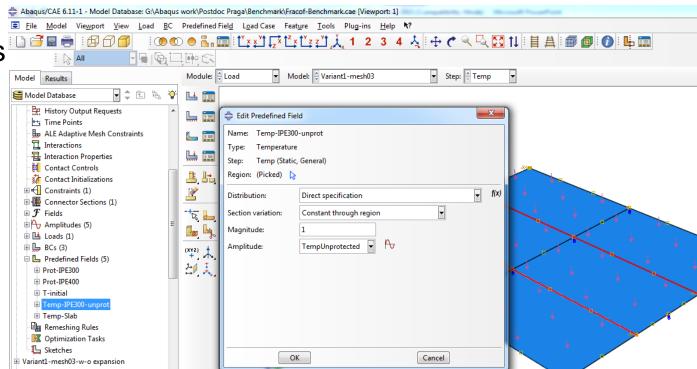

Structural analysis of composite slab


Define Amplitudes :

-temperature of unprotected beams,

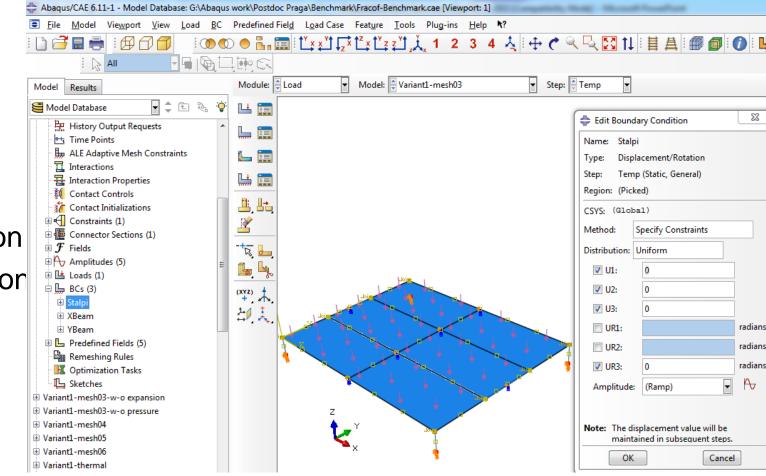

-variation of reference lines for protected primary and secondary beams.

or composite sian								
💠 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqus	work\Postdo	oc Praga\Benc	hmark\Fra	cof-Bench	mark.cae	[Viewport	: 1]	
■ <u>File</u> <u>M</u> odel Vie <u>w</u> port <u>V</u> iew <u>I</u> nteraction	C <u>o</u> nstraint	Co <u>n</u> nector	Specia <u>l</u>	Feat <u>u</u> re	<u>T</u> ools	Plug-ins	<u>H</u> el	p Ni
: 🗋 🗃 🚍 : 🗗 🗇 🥤 🛛) 🔴 🖥 🕻	⊒ [∶] t [×] × × [×]	$\int_{\mathbf{Z}} \mathbf{x} \mathbf{z}$	۲ ۲ z z ۲	<u>, i</u> 1	2 3	4	Å
i 💫 All 🔽 🖣 🖓 🗖	融合							
Model Results	Module:	Interaction	• M	odel: 📮 Va	riant1-me	esh03		
Se Model Database 🚽 🌲 🖗 🄅	1	🚔 Edit Ar	mplitude					x
Calibrations	₽	Name: T	empUnpro	otected				
E Sections (4)		Туре: Т		Jucculu -				
⊕ ⊕ Profiles (3) ⊕ ↓ ↓ ↓ Assembly		туре. п	abulai					
te of Steps (3)	🤹 🧖	Time spar	n: Step tir	ne 🔻				
		Smoothin	ng: 🔘 Use	e solver def	ault			
History Output Requests	🔁 🛄		Spe	ecify:				
🕂 🕂 Time Points	1			-		_		
ALE Adaptive Mesh Constraints		Amplitu	de Data	Baseline C	orrection.	1		
Interactions	14	Т	ime/Freq	uency	Ап	nplitude		<u>^</u>
E Interaction Properties	_	1	0			20		
Contact Controls	₽	2	9		2	0.9886		
Contact Initializations	RP X	3	29		3	30.288		Ξ
🗄 📢 Constraints (1)	X	4	49		4	6.2808		
Connector Sections (1)	+ 1	5	69		6	5.9193		
⊕ <i>F</i> Fields	· *	6	89		8	7.4783		
Amplitudes (5)	😐 👯	7	109		1	10.774		
Foc-ISO-C	(XYZ) 🔺	8	149		1	61.176		
Linear-JON	(XYZ)	9	179		2	00.295		
MainBeamTemp ProtIPE300	51 I.	10	199		2	26.598		
TempUnprotected		11	249		2	91.391		
E Loads (1)		12	299		3	52.905		
		13	349		4	09 274		Ŧ
Green Berger (5) Green Berger (5) Green Berger (5)							1	
Remeshing Rules			OK			Cancel		

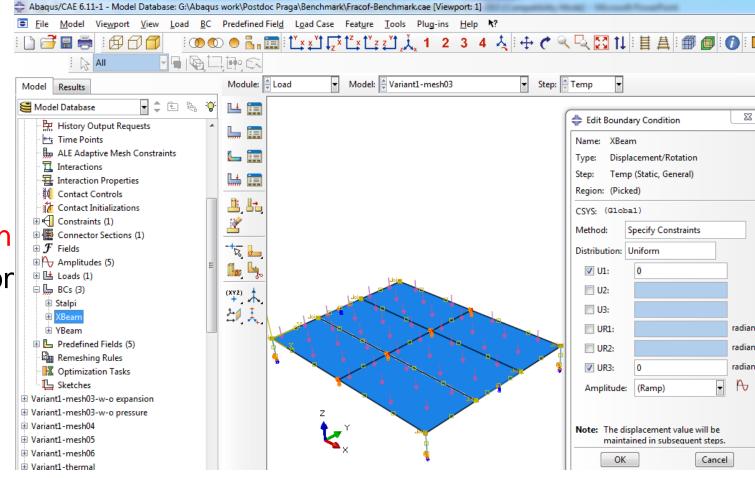


(slab)

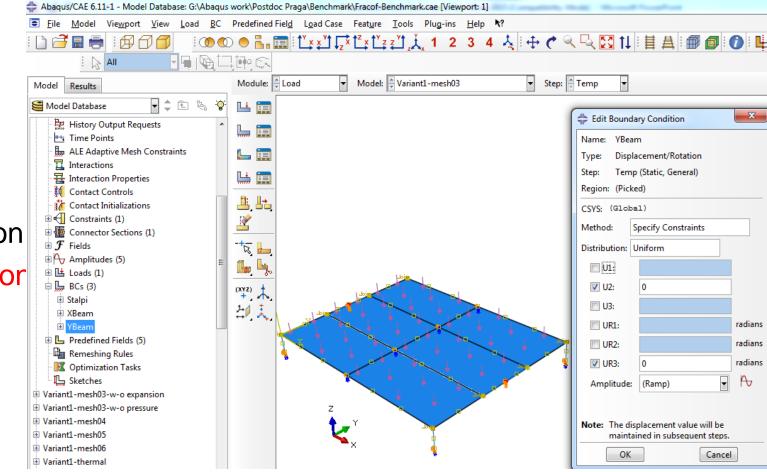
- Predefined fields: -Initial temperatures (entire structure)
- -Gradients through beam section (protected beams)
- -Constant through region (unprotected beam)
- -From thermal analysis data base (slab)


(slab)

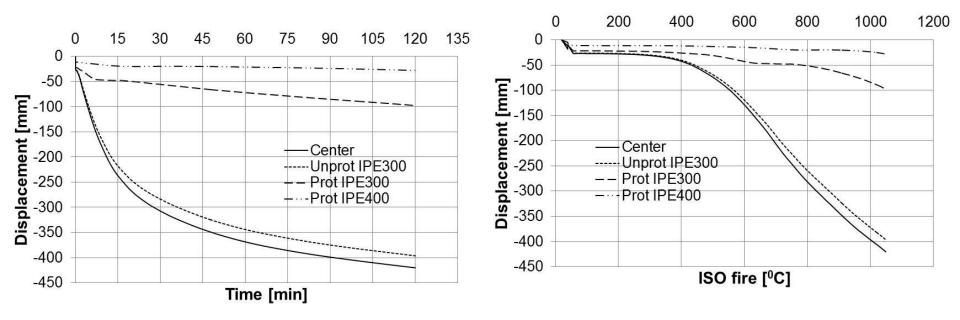
	🚔 Abaqus/CAE 6.11-1 - Model Database: G:\Abaqu	s work\Postdo	c Praga\Benchmark\Fracof-Benchmark.cae [Viewport: 1]
Predefined fields:			iel <u>d</u> L <u>o</u> ad Case Feat <u>u</u> re <u>T</u> ools Plug-ins <u>H</u> elp \?
			氲: Ӗ҂ӖӋҬ҂Ӗ҂Ӗ҂ѮӼ҉1 2 3 4 🦄 🕂 🦿 🕐 🥄 🖾 🔃 🗄 🕮 倒: 🕖: 🖳 🥅
Initial tomporatura	i 💦 All 🔽 🖣 🔂 🕻	1 De Cr	
-Initial temperatures	Model Results	Module:	Load Vodel: Variant1-mesh03 Verience Step: Temp
(entire structure)	🧧 Model Database 🔄 🌲 🖗	LL 🛄	
(entile structure)	History Output Requests	L 🔳	🜩 Edit Predefined Field
Oradianta thraugh	📙 ALE Adaptive Mesh Constraints	L	Name: Temp-Slab
-Gradients through	- 1 Interactions	Li 🛅	Type: Temperature Step: Temp (Static, General)
	to Contact Controls		Step: Temp (Static, General) Region: Read from file
beam section	 	i, k. Z	
	Connector Sections (1)		
(protected beams)			File name: G:/Abaqus work/Postd
		b , b ,	Begin increment: 1
-Constant through	□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	(XYZ)	End step: 1
•	Prot-IPE300 Prot-IPE400	51 i.	End increment: 7200
region (unprotected	T-initial		Interpolation
0 (1	Temp-IPE300-unprot Temp-Slab		Mesh compatibility: Compatible Incompatible
beam)	Remeshing Rules		Interpolate midside nodes
	Optimization Tasks Sketches		
-From thermal	↔ ♥ Variant1-mesh03-w-o expansion		OK Cancel
	 Variant1-mesh03-w-o pressure Variant1-mesh04 		× ×
analysis data base	11 T		
analysis uala base			


Structural analysis of composite slab

Support conditions: Boundary conditions:


- columns
- -longit. direction -transv. directior

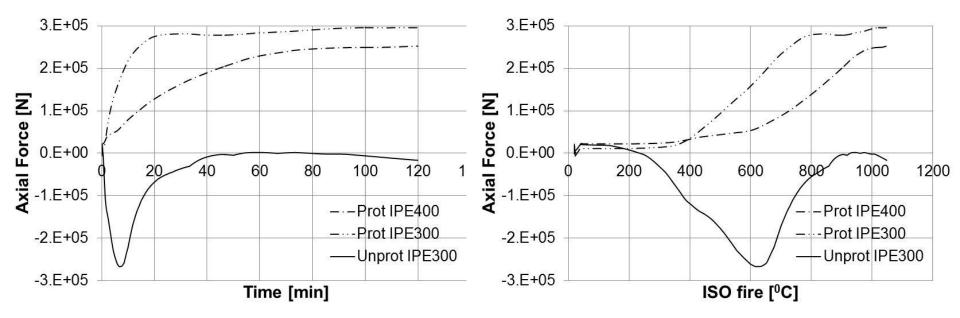
- Support conditions: Boundary conditions:
- columns
- longit. direction
- -transv. directior


- Support conditions: Boundary conditions:
- columns
- -longit. direction -transv. directior

Structural ana	Structural analysis of composite slab										
Mesh and finite elements:	Beams & → columns: B31 (0.3 m)	Element Type Element Library Standard Explicit Geometric Order Quadratic Line Line									
Element Type Element Library Standard Explicit Geometric Order Linear Quadratic Quad Tri Reduced integration		 Hybrid formulation Open section Element Controls Beam type: Shear-flexible Cubic formulation Scaling factors: Linear bulk viscosity: 1 B31: A 2-node linear team in space. 									
Element Controls Membrane strains: Finite Small Membrane hourglass stiffness: Use default Specify Drilling hourglass scaling factor: Use default Specify S4: A 4-node doubly curved general-purpose shell, finite membrane	e strains.	Note: To select an element shape for meshing, select "Mesh->Controls" from the main menu bar. OK Defaults Cancel									
Note: To select an element shape for meshing, select "Mesh->Controls" from the main menu bar.	Cancel	(0.3 m)									

Structural analysis of composite slab

- Results:
- Displacements

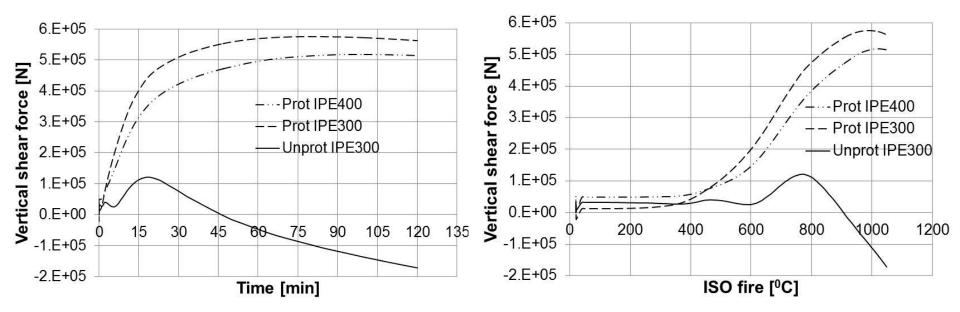


With respect to time

With respect to temperature

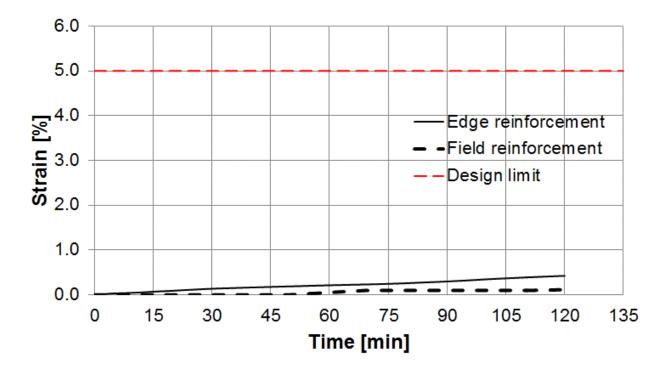
Structural analysis of composite slab

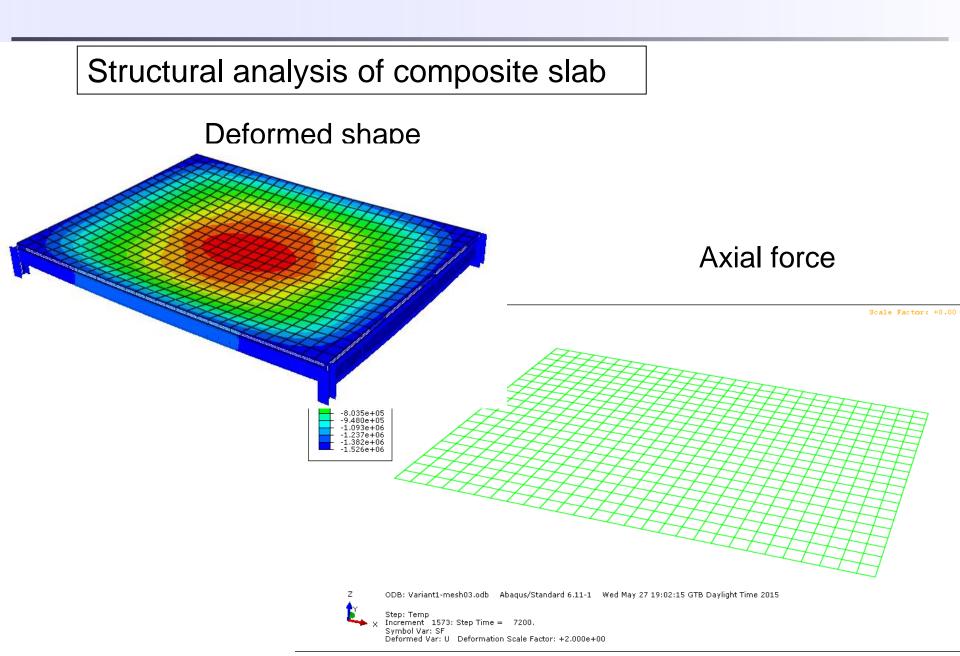
Results, other than obtained in experiment: Axial force



With respect to time

With respect to temperature


Structural analysis of composite slab


Results, other than obtained in experiment: Vertical shear force

Structural analysis of composite slab

Results, other than obtained in experiment: Reinforcement strain

Mesh sensitivity study

Monitored variable: vertical displacement of the slab centre, U3

		Variable:	Grid:	Factor	£	Apparent	* 1	Extra-polated	11	1		GCI ₂₃	
	[m]	U3 [cm]	h	r	C	order: p	solution	value	relative error	relative error	[%]	[%]	
1	0.3	42.03	0.304	1.262	-0.27			42.20	0.0064	0.0039			
2	0.4	41.76	0.383	-	-	4.160	42.20	-	-	-	0.49	0.84	
3	0.5	41.05	0.519	1.354	-0.71			42.04	0.0170	0.0067			

$$\begin{split} h &= \left[\frac{1}{N} \sum_{i=1}^{N} (\Delta A_i) \right]^{1/2} \qquad E_1 = \frac{\varepsilon}{r^p - 1} \\ \varepsilon &= \frac{f_1 - f_2}{f_1} \\ p &= \frac{\ln\left(\frac{f_3 - f_2}{f_2 - f_1}\right)}{\ln(r)} \\ A_1 &= \frac{f_1 - f_{h=0}}{f_{h=0}} \cong \frac{f_1 - f_2}{f_{h=0}} \frac{1}{r^p - 1}, \end{split}$$

- h representative value
- N number of elements
- A_i area of element "i"
- r refinement ratio (should have close values
- ϵ relative difference
- A1 relative error
- p- order of convergence
- GCI grid convergence index

Conclusions

 A benchmark represents a step-by-step procedure for a thermo-mechanical analysis in a certain FEM computer program, here Abaqus;

 The procedure used in Abaqus was validated with the experimental results from the fire test, by means of the same numerical model, for which a complete input data was considered.

Bibliography

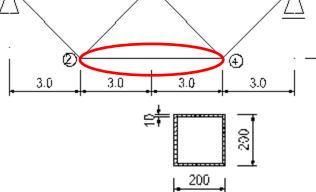
[1] R. Zaharia, C. Vulcu, O. Vassart, T. Gernay and J.M. Franssen, "Numerical analysis of partially fire protected composite slabs," *Steel and Composite Structures*, vol. 14, no. 1, pp. 21-39, 2013

[2] Florian Block, Fire Engineering in Practice – State of the Art in Performancebased Design, COST TU904 – 2013 Training School – Naples 7th of June 2013

[3] Fire Behaviour of Steel and Composite Floor Systems – FRACOF - http://www.macsfire.eu/uk-start.html

[4] Abaqus, Documentation Abaqus 6.11

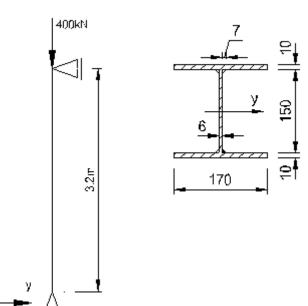
[5] Dictionary.com

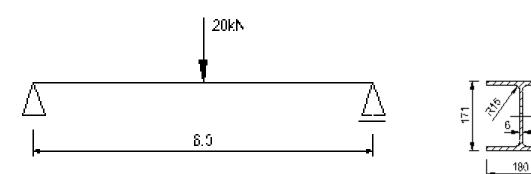

[6] Wald, F., Burgess, I., Kwasniewski, L., Horova, K. and Caldova, E. (ed.). 2014. *Benchmark studies-Verification of numerical models in fire engineering*, Prague: CTU Publishing House

[7]Bin Zhao, Mohsen Roosefid, and Olivier Vassart, "Full scale test of a steel and concrete composite floor exposed to ISO fire," in Structures in fire (Proceedings of the Fifth International Conference), Singapore, 2008, pp. 539-550

EN 1994-1-2 Eurocode 4 - Design of composite structures - Part 1-2: General rules - Structural fire design

Examples


Tensioned element


Compressed element

ί×.

പ്പ

Bended element

